#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases


Autoři: Young-Ho Kim aff001;  Yura Song aff001;  Jong-Kwang Kim aff001;  Tae-Min Kim aff002;  Hye Won Sim aff001;  Hyung-Lae Kim aff003;  Hyonchol Jang aff001;  Young-Woo Kim aff004;  Kyeong-Man Hong aff001
Působiště autorů: Research Institute, National Cancer Center, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea aff001;  Department of Medical Informatics and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea aff002;  Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Korea aff003;  Center for Gastric Cancer, National Cancer Center Hospital, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222535

Souhrn

Background

More than 11,000 laboratories and companies developed their own next-generation sequencing (NGS) for screening and diagnosis of various diseases including cancer. Although inconsistencies of mutation calls as high as 43% in databases such as GDSC (Genomics of Drug Sensitivity in Cancer) and CCLE (Cancer Cell Line Encyclopedia) have been reported, not many studies on the reasons for the inconsistencies have been published. Methods: Targeted-NGS analysis of 151 genes in 35 cell lines common to GDSC and CCLE was performed, and the results were compared with those from GDSC and CCLE wherein whole-exome- or highly-multiplex NGS were employed.

Results

In the comparison, GDSC and CCLE had a high rate (40–45%) of false-negative (FN) errors which would lead to high rate of inconsistent mutation calls, suggesting that highly-multiplex NGS may have high rate of FN errors. We also posited the possibility that targeted NGS, especially for the detection of low-level cancer cells in cancer tissues might suffer significant FN errors.

Conclusion

FN errors may be the most important errors in NGS testing for cancer; their evaluation in laboratory-developed NGS tests is needed.

Klíčová slova:

Biology and life sciences – Genetics – Genomics – Genome analysis – Computational biology – Research and analysis methods – Molecular biology – Evolutionary biology – Database and informatics methods – Bioinformatics – Sequence analysis – Gene identification and analysis – Molecular biology techniques – Mutation – Evolutionary genetics – Sequence databases – Biological databases – Sequencing techniques – Transcriptome analysis – Genomic databases – Mutation databases – DNA sequencing – Next-generation sequencing – Nonsense mutation – Mutation detection


Zdroje

1. National Center for Biotechnology Information (NCBI). Genetic Testing Registry (GTR) online database.

2. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, et al. (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13: 341. doi: 10.1186/1471-2164-13-341 22827831

3. Mu W, Lu HM, Chen J, Li S, Elliott AM (2016) Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. J Mol Diagn 18: 923–932. doi: 10.1016/j.jmoldx.2016.07.006 27720647

4. Qi Y, Liu X, Liu CG, Wang B, Hess KR, et al. (2015) Reproducibility of Variant Calls in Replicate Next Generation Sequencing Experiments. PLoS One 10: e0119230. doi: 10.1371/journal.pone.0119230 26136146

5. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, et al. (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15: 733–747. doi: 10.1038/gim.2013.92 23887774

6. (2018) U.S. Food and Drug Administration-(FDA). Considerations for Design, Development, and Analytical Validation of Next Generation Sequencing (NGS)–Based In Vitro Diagnostics (IVDs) Intended to Aid in the Diagnosis of Suspected Germline Diseases.

7. Luh F, Yen Y (2018) FDA guidance for next generation sequencing-based testing: balancing regulation and innovation in precision medicine. NPJ Genom Med 3: 28. doi: 10.1038/s41525-018-0067-2 30302274

8. Hudson AM, Yates T, Li Y, Trotter EW, Fawdar S, et al. (2014) Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery. Cancer Res 74: 6390–6396. doi: 10.1158/0008-5472.CAN-14-1020 25256751

9. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, et al. (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560: 325–330. doi: 10.1038/s41586-018-0409-3 30089904

10. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, et al. (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41: D955–961. doi: 10.1093/nar/gks1111 23180760

11. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: 603–607. doi: 10.1038/nature11003 22460905

12. Catalog Of Somatic Mutation In Cancer, v71 released Sep 2014.

13. Cancer Cell Line Encyclopedia.

14. Cancer Cell Line Encyclopedia, updated on 7 Feb 2018.

15. Catalog Of Somatic Mutation In Cancer, version 83.

16. Kim HK, Hwang HL, Park SY, Lee KM, Park WC, et al. (2013) Simple and versatile molecular method of copy-number measurement using cloned competitors. PLoS One 8: e69414. doi: 10.1371/journal.pone.0069414 23936009

17. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

18. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, et al. (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31: 213–219. doi: 10.1038/nbt.2514 23396013

19. Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, et al. (2013) Inconsistency in large pharmacogenomic studies. Nature 504: 389–393. doi: 10.1038/nature12831 24284626

20. Cancer Cell Line Encyclopedia C, Genomics of Drug Sensitivity in Cancer C (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature 528: 84–87. doi: 10.1038/nature15736 26570998

21. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, et al. (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547: 217–221. doi: 10.1038/nature22991 28678778

22. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, et al. (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547: 222–226. doi: 10.1038/nature23003 28678784

23. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, et al. (2017) Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 19: 341–365. doi: 10.1016/j.jmoldx.2017.01.011 28341590

24. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 108: 9530–9535. doi: 10.1073/pnas.1105422108 21586637

25. Yeom H, Lee Y, Ryu T, Noh J, Lee AC, et al. (2019) Barcode-free next-generation sequencing error validation for ultra-rare variant detection. Nat Commun 10: 977. doi: 10.1038/s41467-019-08941-4 30816127


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#