Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function
Autoři:
Evan Yang aff001; Christina Mundy aff001; Eric F. Rappaport aff002; Maurizio Pacifici aff001; Paul C. Billings aff001
Působiště autorů:
Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
aff001; Molecular Genetics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222784
Souhrn
Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.
Klíčová slova:
Biology and life sciences – Biochemistry – Research and analysis methods – Proteins – Molecular biology – Macromolecular structure analysis – Database and informatics methods – Bioinformatics – Sequence analysis – Molecular biology techniques – Medicine and health sciences – Sequence motif analysis – Protein interactions – Pharmacology – Protein domains – Drugs – Artificial gene amplification and extension – Polymerase chain reaction – Protein structure – Heparin – Protein structure prediction – Extracellular matrix proteins
Zdroje
1. Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schartz NB, et al. Inhibin at 90: from discovery to clinical application, a historical review. Endocrine Rev. 2014;35:747–94.
2. Salazar VS, Gamer LW, Rosen V. BMP signaling in skeletal development, disease and repair. Nat Rev Endocrinology. 2016;12:203–21. doi: 10.1038/nrendo.2016.12 26893264
3. Schwartz NB, Channing CP. Evidence for ovarian "inhibin": suppression of the secondary rise in serum stimulating hormone levels in proestrous rats by injection of porcine follicular fluid. Proc Natl Acad Sci USA. 1977;74:5721–4. doi: 10.1073/pnas.74.12.5721 271996
4. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 1986;321:776–9. doi: 10.1038/321776a0 3012369
5. de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol. 2012;359:101–6. doi: 10.1016/j.mce.2011.10.009 22037168
6. Jones KL, de Kretser DM, Patella S, Phillips DJ. Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol. 2004;225:119–25. doi: 10.1016/j.mce.2004.07.010 15451576
7. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80. doi: 10.1016/j.cell.2008.02.008 18295582
8. Xia Y, Schneyer AL. The biology of activin: recent advances in structure, regulation and function. J Endocrinol. 2009;202:1–12. doi: 10.1677/JOE-08-0549 19273500
9. Antsiferova M, Werner S. The bright and dark sides of activin in wound healing and cancer. J Cell Sci. 2012;125:3929–37. doi: 10.1242/jcs.094789 22991378
10. Gray AM, Mason AJ. Requirement for activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science. 1990;247:1328–30. doi: 10.1126/science.2315700 2315700
11. Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol. 2012;359:2–12. doi: 10.1016/j.mce.2011.06.030 21763751
12. Gentry LE, Lioubin MN, Purchio AF, Marquardt H. Molecular events in the processing of recombinant type I pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol. 1988;8:4162–8. doi: 10.1128/mcb.8.10.4162 3185545
13. Mason AJ, Farnworth PG, Sullivan J. Characterization and determination of the biological activities of nonclevable high molecular wieght forms of inhibin A and activin A. Mol Endocrinol. 1996;10:1055–65. doi: 10.1210/mend.10.9.8885240 8885240
14. Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma S, Hyvonen M. Structural basis for the inhibtion of activin signaling by follistatin. EMBO J. 2006;25:1035–45. doi: 10.1038/sj.emboj.7601000 16482217
15. McDowell N, Zorn AM, Crease DJ, Gurdon JB. Activin has direct long-range signaling activity and can form a concentration gradient by diffusion. Curr Biol. 1997;7:671–81. doi: 10.1016/s0960-9822(06)00294-6 9285724
16. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature for proteoglycans. Matrix Biol. 2015;42:11–55. doi: 10.1016/j.matbio.2015.02.003 25701227
17. Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform. 2007;8:6–21. doi: 10.1093/bib/bbl015 16772268
18. Wang X, Fischer G, Hyvonen M. Structure and activation of pro-activin A. Nat Communications. 2016;7:12052.
19. Li S, Shimono C, Norioka N, Nakano I, Okubo T, Yagi Y, et al. Activin A binds to perlecan through its pro-region that has heparin/heparan sulfate binding activity. J Biol Chem. 2010;285:36645–55. doi: 10.1074/jbc.M110.177865 20843788
20. Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56:272–80. doi: 10.3109/03008207.2015.1045066 26076122
21. Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–57. doi: 10.1146/annurev-biochem-060713-035314 24606135
22. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arterioschler Thromb Vasc Biol. 1989;9:21–32.
23. Fromm JR, Hileman RE, Caldwell EE, Weiler JM, Linhardt RJ. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys. 1997;343:92–100. doi: 10.1006/abbi.1997.0147 9210650
24. Verrecchio A, Germann MW, Schick BP, Kung B, Twardowski T, San Antonio JD. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem. 2000;275:7701–7. doi: 10.1074/jbc.275.11.7701 10713081
25. Bulow HE, Hobert O. The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol. 2006;22:375–407. doi: 10.1146/annurev.cellbio.22.010605.093433 16805665
26. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspec Biol. 2011;3:a004952.
27. Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 signaling through fibroblast growth factor receptor 1c. J Biol Chem. 2017;292:2495–509. doi: 10.1074/jbc.M116.761585 28031461
28. Ohkawara B, Iemura S, ten Dijke P, Ueno N. Action range of BMP is defined by its N-terminal basic amino acid core. Curr Biol. 2002;12:205–9.
29. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem. 1996;237:295–302. doi: 10.1111/j.1432-1033.1996.0295n.x 8620887
30. Mundy C, Yang E, Takano H, Billings PC, Pacifici M. Heparan sulfate antagonism alters bone morphogenetic protein signaling and receptor dynamics, suggetsing a mechanism in Hereditary Multiple Exostoses. J Biol Chem. 2018; doi: 10.1074/jbc.RA117.000264 29622677
31. Billings PC, Yang E, Mundy C, Pacifici M. Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: Implications for function. J Biol Chem. 2018;293:14371–83. doi: 10.1074/jbc.RA118.003191 30082319
32. Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim Biophys Acta. 2012;1824:1374–81. doi: 10.1016/j.bbapap.2012.07.002 22824487
33. Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, et al. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: A mechanism likely deranged in Hereditary Multiple Exostoses. Dev Biol. 2013;377:100–12. doi: 10.1016/j.ydbio.2013.02.008 23458899
34. Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M. Heparan sulfate in skeletal development, growth, and pathology: the case of Hereditary Multiple Exostoses. Dev Dyn. 2013;242:1021–32. doi: 10.1002/dvdy.24010 23821404
35. Barton DE, Yang-Feng TL, Mason AJ, Seeburg PH, Francke U. Mapping of genes for inhibin subunits alpha, beta A, and beta B on human and mouse chromosomes and studies in jsd mice. Genomics. 1989;5:91–9. doi: 10.1016/0888-7543(89)90091-8 2767687
36. Mayo KE. Inhibin and activin: molecular aspects of regulation and function. Trends Endocrinol Metab. 1994;5:407–15. 18407237
37. Stewart AG, Milborrow HM, Ring JM, Crowther CE, Forage RG. Human inhibin genes. Genomic chracterisation and sequencing. FEBS Lett. 1986;206:329–34. doi: 10.1016/0014-5793(86)81006-7 3758355
38. Abe M, Shintani Y, Eto Y, Harada K, Kosaka M, Matsumoto T. Potent induction of activin A secretion from monocytes and bone marrow stromal fibroblasts by cogante interaction with activated T cells. J Leukoc Biol. 2002;72:347–52. 12149426
39. Sierra-Filardi E, Puig-Kroger A, Blanco FJ, Nieto C, Bragado R, Palomero MI, et al. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood. 2011;117:5092–101. doi: 10.1182/blood-2010-09-306993 21389328
40. Farokhzad OC, Teodoridis JM, Park HL, Arnaout MA, Shelley CS. CD43 gene expression is mediated by a nuclear factor which binds pyrimidine-rich single-stranded DNA. Nucleic Acids Res. 2000;28:2256–67. doi: 10.1093/nar/28.11.2256 10871347
41. Yu J, Shao L-E, Frigon NL, Lofgren J, Schwall R. Induced expression of a new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid. Immunology. 1996;88:368–74. doi: 10.1046/j.1365-2567.1996.d01-675.x 8774352
42. Hefferan T, Subramaniam M, Hhosla S, Riggs BL, Spelsberg TC. Cytokine-specific induction of the TGF-beta inducible early gene (TIEG): regulation by specific members of the TGF-beta family. J Cell Biochem. 2000;78:380–90. 10861837
43. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213 25549265
44. Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. Structural insights into proteoglycan-shaped hedgehog signaling. Proc Natl Acad Sci USA. 2013;110:16420–5. doi: 10.1073/pnas.1310097110 24062467
45. Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J. Glypican-3 inhibits hedgehog signaling during development by competing with patched for hedgehog binding. Dev Cell. 2008;14:700–11. doi: 10.1016/j.devcel.2008.03.006 18477453
46. Kirkpatrick CA, Knox SM, Staatz WD, Fox B, Lercher DM, Selleck SB. The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev Biol. 2006;300:570–82. doi: 10.1016/j.ydbio.2006.09.011 17055473
47. Sugino K, Kurosawa N, Nakamura T, Takio K, Shimasaki S, Ling N, et al. Molecular heterogeneity of follistatin, an activin-binding protein. Higher affinity of the carboxyl-terminal truncated forms for heparan sulphate proteoglyacns on the avorian granulosa cells. J Biol Chem. 1993;268:15579–87. 8340384
48. Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem. 2004;279:12346–54. doi: 10.1074/jbc.M313523200 14707131
49. Ye S, Luo Y, Lu W, Jones RB, Linhardt RJ, Capila I, et al. Structural basis for interaction of FGF-1, FGF-2 and FGF-7 with different heparan sulfate motifs. Biochemistry. 2001;40:14429–39. doi: 10.1021/bi011000u 11724555
50. Johnson KE, Makanji Y, Temple-Smith P, Kelly EK, Barton PA, Al-Musawi SL, et al. Biological activity and in vivo half-life of pro-activin A in male rats. Mol Cell Endocrinol. 2016;422:84–92. doi: 10.1016/j.mce.2015.12.007 26687063
51. Hagemann AI, Xu X, Nentwich O, Hyvonen M, Smith JC. Rab5-mediated endocytosis of activin is not required for gene activation or long-range signaling in Xenopous. Development. 2009;136:2803–13. doi: 10.1242/dev.034124 19605501
52. Hatsell SJ, Idone V, Alessi Wolken DM, Huang L, Kim HJ, Wang LC, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Trans Med. 2015;7:303ra137.
53. Shore E, Kaplan FS. Insights from a rare genetic disorder of extra-skeletal bone formation fibrodysplasia ossificans progressiva (FOP). Bone. 2008;43:427–33. doi: 10.1016/j.bone.2008.05.013 18590993
54. Shore E, Xu M, Feldman GJ, Fenstermacher DA, Consortium TFIR, Brown MA, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 2006;38:525–7. doi: 10.1038/ng1783 16642017
55. Pacifici M, Shore EM. Common mutations in ALK2/ACVR1, a multi-facet receptor, have roles in distinct musculoskeletal and neural orphan disorders. Cytokine & Growth Factor Rev. 2016;27:93–104.
56. Khachigian LM, Parish CR. Phosphomannopentoaose sulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev. 2004;22:1–6. 14978514
57. Dundas CM, Demonte D, Park S. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol. 2013;97:9343–53. doi: 10.1007/s00253-013-5232-z 24057405
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania