#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Drought stress has transgenerational effects on soybean seed germination and seedling vigor


Autoři: Chathurika Wijewardana aff001;  K. Raja Reddy aff001;  L. Jason Krutz aff002;  Wei Gao aff003;  Nacer Bellaloui aff004
Působiště autorů: Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States of America aff001;  Mississippi Water Resources Research Institute, Mississippi State University, Mississippi State, MS, United States of America aff002;  USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, United States of America aff003;  USDA, Agriculture Research Service, Crop Genetics Research Unit, Stoneville, MS, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0214977

Souhrn

Effects of environmental stressors on the parent may be transmitted to the F1 generation of plants that support global food, oil, and energy production for humans and animals. This study was conducted to determine if the effects of drought stress on parental soybean plants are transmitted to the F1 generation. The germination and seedling vigor of F1 soybean whose maternal parents, Asgrow AG5332 and Progeny P5333RY, were exposed to soil moisture stress, that is, 100, 80, 60, 40, and 20% replacement of evapotranspiration (ET) during reproductive growth, were evaluated under controlled conditions. Pooled over cultivars, effects of soil moisture stress on the parents caused a reduction in the seed germination rate, maximum seed germination, and overall seedling performance in the F1 generation. The effect of soil moisture stress on the parent environment induced seed quality that carried on the F1 generation seed gemination and seedling traits under optimum conditions and further exasperated when exposed to increasing levels of drought stress. Results indicate that seed weight and storage reserve are key factors positively associated with germination traits and seedling growth. Our data confirm that the effects of soil moisture stress on soybean are transferable, causing reduced germination, seedling vigor, and seed quality in the F1 generation. Therefore, optimal water supply during soybean seed formation period may be beneficial for seed producers in terms of optimizing seed quality and vigor characteristics of commodity seed.

Klíčová slova:

Biology and life sciences – Cell biology – Plant science – Organisms – Eukaryota – Plants – Plant pathology – Agriculture – Ecology and environmental sciences – Plant ecology – Plant-environment interactions – Ecology – Soil science – Plant physiology – Plant defenses – Plant resistance to abiotic stress – Plant anatomy – Leaves – Crop science – Crops – Seeds – Plant reproduction – Seed germination – Seedlings – Soybean – Osmotic shock – Edaphology


Zdroje

1. USDA. Periodic and scheduled ERS publications and data on soybeans and oil crops. United States Department of Agriculture Economic Research Service. 2017. Accessed on 8/30/2018. https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/#periodic

2. Leng G, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019; 654: 811–821. doi: 10.1016/j.scitotenv.2018.10.434 30448671

3. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ. Climate variability and vulnerability to climate change: a review. Glob Chang Biol. 2014; 20: 3313–3328. doi: 10.1111/gcb.12581 24668802

4. Munnȇ-Bosch S, Alegre L. Cross-stress tolerance and stress ‘memory’ in plants: An integrated view. Environ Exp Bot. 2013; 94: 1–88.

5. Cendán C, Sampedro L, Zas R. The maternal environment determines the timing of germination in Pinus pinaster. Environ Exp Bot. 2013; 94: 66–72.

6. Figueroa R, Herms DA, Cardina J, Doohan D. Maternal environment effects on common groundsel (Senecio vulgaris) seed dormancy. Weed Sci. 2010; 58: 160–166.

7. Tielborger K, Petru M. An experiment test for effects of the maternal environment on delayed germination. J Ecol. 2010; 98; 1216–1223.

8. Nosalewicz A, Siecinska J, Smiech M. Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environ Exp Bot. 2016; 131: 120–127.

9. Segura F, Vicente MJ, Franco JA, Martinez-Sanchez JJ. Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus seeds (Fabaceae) a critically endangered species of SE Spain. Flora 2015; 216: 71–76.

10. Dornbos DL, Mullen RE, Shibles RE. Drought stress effects during seed fill on soybean seed germination and vigor. Crop Sci. 1989; 29: 476–480.

11. Fahad SA, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017; 8: 1147. doi: 10.3389/fpls.2017.01147 28706531

12. Donohue K, Schmitt J. Maternal environmental effects in plants: adaptive plasticity? In: Mousseau T Fox C.W Maternal effects as adaptations (Ed.) Oxford University Press, New York NY. 1998. pp 137–158.

13. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002; 14: 15–45.

14. Thakur M, Sharma AD. Salt stress-induced proline accumulation in germinating embryos: evidence suggesting a role of proline in seed germination. J Arid Environ. 2005; 62; 517–523.

15. Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature 2004; 431: 364–370. doi: 10.1038/nature02875 15372044

16. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009; 23: 781–783. doi: 10.1101/gad.1787609 19339683

17. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, et al. Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins. PLoS ONE 2010; 5: e9514. doi: 10.1371/journal.pone.0009514 20209086

18. Suter L, Widmer A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS ONE 2013; 8: e60364 doi: 10.1371/journal.pone.0060364 23585834

19. Jagadish SVK, Muthurajan R, Rang ZW, Malo R, Heuer S, Bennett J, et al. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv N22). Rice 2011; 4: 1–11.

20. Paun O, Bateman RM, Fay MF, Hedren M, Civeyrel L, Chase MW. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol. 2010; 27: 2465–2473. doi: 10.1093/molbev/msq150 20551043

21. Reddy KR, Hodges HF, Read JJ, McKinion JM, Baker JT, Tarpley L, et al. Soil–plant–atmosphere–research (SPAR) facility: A tool for plant research and modelling. Biotronics 2001; 30:27–50.

22. Wijewardana C, Reddy KR, Alsajri FA, Irby T, Krutz J, Golden B. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrig Sci. 2018; 36: 241–255.

23. Wijewardana C, Bellaloui N, Reddy KR. Soybean seed physiology quality and chemical composition under soil moisture stress. Food Chem. 2019; 278: 92–100. doi: 10.1016/j.foodchem.2018.11.035 30583452

24. Wilcox JR, Shibles RM. Interrelationships among seed quality attributes in soybean. Crop Sci. 2001; 41: 11–14.

25. Association of official analytical chemists (AOAC). Method 988.05 In: official methods of analysis 15th (ed) by Helrich K, Arlington VA. 1990a; AOAC 70.

26. Association of official analytical chemists (AOAC). Method 920.39 In: official methods of analysis 15th (ed) by Helrich K, Arlington VA. 1990b; AOAC 79.

27. Bellaloui N, Mengistu A, Fisher DK, Abel CA. Soybean seed composition constituents as affected by drought and Phomopsisin phomopsis susceptible and resistant genotypes. J Crop Improv. 2012; 26: 428–453.

28. Bellaloui N, Smith JR, Ray JD, Gillen AM. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009; 49: 608–620.

29. Boydak E, Alpaslan M, Hayta M, Gercek S, Simsek M. Seed composition of soybeans grown in the Harran region of Turkey as affected by row spacing and irrigation. J Agric Food Chem. 2002; 50: 718–720.

30. Plank CO. Plant analysis reference procedures for the southern region of the United States Georgia Agriculture Experiment Station Southern Cooperation Service Bulletin 1992; 368.

31. Michel BE. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 1983; 72: 66–70. doi: 10.1104/pp.72.1.66 16662983

32. Butler TJ, Celen AE, Webb SL, Krstic D, Interrante M. Temperature affects the germination of forage legume seeds. Crop Sci. 2015; 54: 2846–2853.

33. Hewit EJ. Sand and water culture methods used in the study of plant nutrition. Tech. Comm. No. 22. Commonwealth Bureau of Horticulture and Plantation Crops, Commonwealth Agriculture Bureau Farnham Royal, Bucks, England. 1952.

34. Brand D, Wijewardana C, Gao W, Reddy KR. Interactive effects of carbon dioxide low temperature and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth. Front Earth Sci. 2016; 10: 607–620.

35. Reddy KR, Brand D, Wijewardana C, Gao W. Temperature effects on cotton seedling emergence growth and development. Agron J. 2017; 109: 1379–1387.

36. Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy KR. Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J Agron Crop Sci. 2018; 204: 467–476.

37. Seepaul R, Macoon B, Reddy KR, Baldwin B. Switchgrass (Panicum virgatum L.) intraspecific variation and thermotolerance classification using in vitro seed germination assay. Am J Plant Sci. 2011; 2: 134–147.

38. Singh B, Reddy KR, Redona ED, Walker T. Developing a screening tool for osmotic stress tolerance classification of rice cultivars based on in vitro seed germination. Crop Sci. 2017; 57: 387–394.

39. Wijewardana C, Alsajri FA, Reddy KR. Soybean seed germination response to in vitro osmotic stress. Seed Technol., 2018; 39: 143–154.

40. Jones RH, Allen BP, Sharitz RR. Why do early-emerging tree seedlings have survival advantages?: A test using Acer rubrum (Aceraceae). Am. J. Bot., 1997; 84: 1714–1718. 21708576

41. Reddy KR, Hodges HF, McKinion JM. Crop modeling and application: A cotton example. Adv Agron. 1997; 59: 225–290.

42. Reddy KR, Kakani VG, Hodges HF. Exploring the use of environmental productivity index concept for crop production and modeling. In: LR Ahuja V Reddy SA Saseendranand Yu Q ed. Response of crops to limited water: Understanding and modeling of water stress effects on plant growth processes. ASA CSSA SSSA Madison WI. 2008; pp 387–410.

43. Wijewardana C, Reddy KR, Shankle MW, Meyers S, Gao W. Low and high temperature effects on sweetpotato storage root initiation and early transplant establishment. Sci Hort. 2018; 240: 38–48.

44. Egli DB, Yu ZW. Crop growth rate and seeds per unit area in soybean. Crop Sci. 1991; 31: 439–442.

45. Samarah NH, Mullen RE, Anderson I. Soluble sugar contents germination and vigor of soybean seeds in response to drought stress. J New Seeds 2009; 10: 63–73.

46. Donohue K. Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans B 2009; 364: 1059–1074.

47. Nobel PS. Environmental productivity indices and productivity for Opuntia ficus indica under current and elevated atmospheric CO2 levels. Plant Cell Environ. 1991; 14: 637–646.

48. Castro J, Hódar JA, Gómez JM. Seed size In: Basra A.S (Ed.) Handbook of seed science and technology. Haworth Press New York, 2006; pp 397–428.

49. Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch PJ, et al. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 2014; 4: 418–435.

50. Kunert KJ, Vorster B, Fenta BA, Kibido T, Dionisio G, Foyer CH. Drought stress responses in soybean roots and nodules. Front Plant Sci. 2016; 7: 1015. doi: 10.3389/fpls.2016.01015 27462339

51. Ku Y, Wan-Kin A, Yung Y, Li M, Wen C, Liu X, et al. Drought stress and tolerance in soybean 2013; InTech http://dx.doi.org/10.5772/52945.

52. Siddique MRB, Hamid A, Islam MS. Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Bot Bull Acad Sin Taipei 1999; 40: 141–145.

53. Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci. 2000; 5: 187–188.

54. Lauer MJ, Boyer JS. Internal CO2 measured directly in leaves. Plant Physiol. 1992; 98: 1310–1316. doi: 10.1104/pp.98.4.1310 16668793

55. Sultan SE, Barton K, Wilczek AM. Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology 2009; 90: 1831–1839. 19694132

56. Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, et al. Do plants remember drought? Hints towards a drought-memory in grasses. Environ. Exp. Bot. 2011; 71: 34–40.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#