Adjusting cotton planting density under the climatic conditions of Henan Province, China
Autoři:
Liyuan Liu aff001; Chuanzong Li aff001; Yingchun Han aff001; Zhanbiao Wang aff001; Lu Feng aff001; Xiaoyu Zhi aff001; Beifang Yang aff001; Yaping Lei aff001; Wenli Du aff001; Yabing Li aff001
Působiště autorů:
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
aff001; State Key Laboratory of Cotton Biology, Anyang, Henan, China
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222395
Souhrn
The growth and development of cotton are closely related to climatic variables such as temperature and solar radiation. Adjusting planting density is one of the most effective measures for maximizing cotton yield under certain climatic conditions. The objectives of this study were (1) to determine the optimum planting density and the corresponding leaf area index (LAI) and yield under the climatic conditions of Henan Province, China, and (2) to learn how climatic conditions influence cotton growth, yield, and yield components. A three-year (2013–2015) field experiment was conducted in Anyang, Henan Province, using cultivar SCRC28 across six planting density treatments: 15,000, 33,000, 51,000, 69,000, 87,000, and 105,000 plants ha−1. The data showed that the yield attributes, including seed cotton yield, lint yield, dry matter accumulation, and the LAI, increased as planting density increased. Consequently, the treatment of the maximum density with 105,000 plants ha-1 was the highest-yielding over three years, with the LAIs averaged across the three years being 0.37 at the bud stage, 2.36 at the flower and boll-forming stage, and 1.37 at the boll-opening stage. Furthermore, the correlation between the cotton yield attributes and meteorological conditions indicated that light interception (LI) and the diurnal temperature range were the climatic factors that most strongly influenced cotton seed yield. Moreover, the influence of the number of growing degree days (GDD) on cotton was different at different growth stages. These observations will be useful for determining best management practices for cotton production under the climatic conditions of Henan Province, China.
Klíčová slova:
Leaves – Seasons – Seeds – Flowering plants – Cotton – Flowers – Planting – Buds
Zdroje
1. McConnell JS, Mozaffari M. Yield, Petiole Nitrate, and Node Development Responses of Cotton to Early Season Nitrogen Fertilization. Journal of Plant Nutrition. 2005;27(7):1183–97. doi: 10.1081/pln-120038543
2. Yang G-z, Zhou M-y. Multi-Location Investigation of Optimum Planting Density and Boll Distribution of High-Yielding Cotton (G. hirsutum L.) in Hubei Province, China. Agricultural Sciences in China. 2010;9(12):1749–57. doi: 10.1016/s1671-2927(09)60273-x
3. Zhang H, Tian W, Zhao J, Jin L, Yang J, Liu C, et al. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci U S A. 2012;109(26):10275–80. Epub 2012/06/13. doi: 10.1073/pnas.1200156109 22689968; PubMed Central PMCID: PMC3387040.
4. Tian B, Zhou Z, Du FK, He C, Xin P, Ma H. The Tanaka Line shaped the phylogeographic pattern of the cotton tree (Bombax ceiba) in southwest China. Biochemical Systematics and Ecology. 2015;60:150–7. doi: 10.1016/j.bse.2015.04.014
5. Yang Y, Yang Y, Han S, Macadam I, Liu DL. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agricultural Water Management. 2014;144:42–53. doi: 10.1016/j.agwat.2014.06.001
6. Bednarz CW, Nichols RL; Brown SM. Plant Density Modifies Within-Canopy Cotton Fiber Quality. Crop Science. 2006;46(2): 950–956.
7. Yang G-z, Luo X-j, Nie Y-c, Zhang X-l. Effects of Plant Density on Yield and Canopy Micro Environment in Hybrid Cotton. Journal of Integrative Agriculture. 2014;13(10):2154–63. https://doi.org/10.1016/S2095-3119(13)60727-3.
8. Bednarz CW., Shurley WD, Anthony WS, Nichols RL. Yield, quality, and profitability of cotton produced at varying plant densities. Agronomy Journal; 2005 97 (1): 235–240. doi: 10.1051/agro:2004062
9. Boroomandan P, Khoramivafa M, Haghi Y, Ebrahimi. The effects of nitrogen starter fertilizer and plant density on yield, yield components and oil and protein content of soybean (Glycine max L. Merr). Pakistan journal of biological sciences. 2009; 12(24): 378–382. doi: 10.3923/pjbs.2009.378.382 19579973
10. Liu Y-E., Hou P, Xie R-Z, Hao W-P, Li S-K, Mei XR. Spatial variation and improving measures of the utilization efficiency of accumulated temperature. Crop Science 2015;55(4), 1806–1817. doi: 10.2135/cropsci2014.10.0735
11. Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity? Global Food Security. 2015;4:46–50. doi: 10.1016/j.gfs.2014.11.003
12. Xue H, Han Y, Li Y, Wang G, Feng L, Fan Z, et al. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Research. 2015;184:17–27. doi: 10.1016/j.fcr.2015.09.004
13. Tsimba R, Edmeades GO, Millner JP, Kemp PD. The effect of planting date on maize grain yields and yield components. Field Crops Research. 2013;150:135–44. doi: 10.1016/j.fcr.2013.05.028
14. Wang C, Wang D, Li M, Ruan M, S. Canopy Structure and Radiation Interception of Cotton Grown under High Density Condition in Northern Xinjiang. Cotton Science, 2006;18(4):223–227. doi: 10.3969/j.issn.1002-7807.2006.04.007
15. Dong H, Li W, Tang W, Li Z, Zhang D, Niu Y. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Research. 2006;98(2–3):106–15. doi: 10.1016/j.fcr.2005.12.008
16. Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G. Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Research. 2013;145:52–9. doi: 10.1016/j.fcr.2013.02.005
17. Giuliani R, Magnanini E, Fragassa C, Nerozzi F. Ground monitoring the light–shadow windows of a tree canopy to yield canopy light interception and morphological traits. Plant, Cell and Environment. 2000; 23: 783–796. doi: 10.1046/j.1365-3040.2000.00600.x
18. Mariscal M, Orgaz F, Villalobos F. Modelling and measurement of radiation interception by olive canopies. Agricultural and Forest Meteorology. 2000;100:183–197. doi: 10.1016/s0168-1923(99)00137-9
19. Galanopoulou-Sendouka S, Sficas A, Fotiadis N, Gagianas A., Gerakis P. Effect of population density, planting date, and genotype on plant growth and development of cotton. Agronomy Journal.1980; 72(2):347. doi: 10.2134/agronj1980.00021962007200020022x
20. Tetio-Kagho F, Gardner F. Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth. 1988; 80(6):930. doi: 10.2134/agronj1988.00021962008000060018x
21. Begna S, Hamilton R, Dwver L., Stewart D, Smith D. Effects of population density and planting pattern on the yield and yield components of leafy reduced-stature maize in a short-season area. Agronomy & Crop Science 1997;179: 9–17. doi: 10.1111/j.1439-037X.1997.tb01142.x
22. Sarlikioti V, de Visser PH, Marcelis LF. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Ann Bot. 2011;107(5):875–83. Epub 2011/03/01. doi: 10.1093/aob/mcr006 21355008; PubMed Central PMCID: PMC3077986.
23. Mao L, Zhang L, Zhao X, Liu S, van der Werf W, Zhang S, et al. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Research. 2014;155:67–76. doi: 10.1016/j.fcr.2013.09.021
24. Liu T, Gu L, Dong S, Zhang J, Liu P, Zhao B. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research. 2015;170:32–9. doi: 10.1016/j.fcr.2014.09.015
25. Srinivasan V, Kumar P, Long SP. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob Chang Biol. 2017;23(4):1626–35. Epub 2016/11/20. doi: 10.1111/gcb.13526 27860122; PubMed Central PMCID: PMC5347850.
26. Xu W, Liu C, Wang K, Xie R, Ming B, Wang Y, et al. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research. 2017;212:126–34. doi: 10.1016/j.fcr.2017.05.006
27. Flans F, Kiniry J, Board J, Westagte M, Reicosky D. Row spacing effects on light extinction coefficients of corn, sorghum, soybean and sunflower. Agronomy Journal, 1996; 88(2). 185. doi: 10.2134/agronj1996.00021962008800020011x
28. Maddonni G, Otegui M, Cirilo A. Plant population density: row spacing and hybrid effects on maize canopy architecture and light attenuation.Field Crops Research, 2001;71(3):183–193 doi: 10.1016/s0378-4290(01)00158-7
29. Chenu K, Franck N, Dauzat J, Barczi J, Rey H., Lecoeur J. Integrated responses of rosette organogenesis, morphogenesis and architecture to reduced incident light in Arabidopsis thaliana results in higher efficiency of light interception. Functional Plant Biology. 2005; 32(12): 1123–1134. doi: 10.1071/FP05091
30. Escobar-Gutiérrez AJ, Combes D, Rakocevic M, de Berranger C, Eprinchard-Ciesla A, Sinoquet H, et al. Functional relationships to estimate Morphogenetically Active Radiation (MAR) from PAR and solar broadband irradiance measurements: The case of a sorghum crop. Agricultural and Forest Meteorology. 2009;149(8):1244–53. doi: 10.1016/j.agrformet.2009.02.011
31. Clover GRG, Jaggard KW, Smith HG, Azam-Ali SN. The use of radiation interception and transpiration to predict the yield of healthy, droughted and virus-infected sugar beet. The Journal of Agricultural Science. 2001;136(2):169–78. doi: 10.1017/s002185960100853x
32. Wiechers D, Kahlen K, Stützel H. Evaluation of a radiosity based light model for greenhouse cucumber canopies. Agricultural and Forest Meteorology. 2011;151(7):906–15. doi: 10.1016/j.agrformet.2011.02.016
33. Duvrick D, Cassman K. Post-green revolution trends in yield potential of temperate maize in north-central United States. Crop Science. 1999;39(6):1622–1630. doi: 10.2135/cropsci1999.3961622x
34. Chen G, Gao J, Zhao M, Dong S, Li K., Yang Q, et al. Distribution, yield structure, and key cultural techniques of maize superhigh yield plots in recent years. Acta Agronomica Sinica. 2012; 38(1):80–85. doi: 10.3724/SP.J.1006.2012.00080
35. van Ittersum MK, Cassman KG. Yield gap analysis—Rationale, methods and applications—Introduction to the Special Issue. Field Crops Research. 2013;143:1–3. doi: 10.1016/j.fcr.2012.12.012
36. Zhi X, Han Y, Li Y, Wang G, Du W, Li X, et al. Effects of plant density on cotton yield components and quality. Journal of Integrative Agriculture. 2016;15(7):1469–79. doi: 10.1016/s2095-3119(15)61174-1
37. Gerardeaux E, Jordan-Meille L, Pellerin S. Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin. The Journal of Agricultural Science. 2009;147(2):155–68. doi: 10.1017/s0021859608008381
38. Tiwari R, Picchioni G, Steiner L, Jones D, Hughs S, Zhang J. Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica. 2013;194(1), 1–11. doi: 10.1007/s10681-013-0927-x
39. Boquet D. Cotton in ultra-narrow row spacing: Plant density and nitrogen fertilizer rates. Agronomy Journal, 2005;97(1): 279–287. doi: 10.2134/agronj2005.0279
40. Jones M, Wells R. Dry matter allocation and fruiting patterns of cotton grown at two divergent plant populations. Crop Science. 1997; 37(3): 797–802. doi: 10.2135/cropsci1997.0011183X003700030017x
41. Dai J, Li W, Tang W, Zhang D, Li Z, Lu H, et al. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research. 2015;180:207–15. doi: 10.1016/j.fcr.2015.06.008
42. Jones MA, Wells R. Dry matter allocation and fruiting patterns of cotton grown at two divergent plant populations. Crop Science. 1997;37:797–802. doi: 10.2135/cropsci1997.0011183X003700030017x
43. Evans L, Fischer R. Yield potential: its definition, measurement, and significance. Crop Science. 1999;39(6):1544–1551. doi: 10.2135/cropsci1999.3961544x
44. Peng S, Huang J, Sheehy J, Laza R, Visperas R, Zhong X, et al. Rice yields decline with higher night temperature from global warming. 2004;101(27):9971–9975. doi: 10.1073/pnas.0403720101 15226500
45. Echarte L, Luque S, Andrade F, Sadras V, Cirilo A, Otegui M,et al. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Research. 2000;68:1–8. doi: 10.1016/S0378-4290(00)00101-5
46. Hecht VL, Temperton VM, Nagel KA, Rascher U, Pude R, Postma JA. Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number. Plant and Soil. 2018;439(1–2):179–200. doi: 10.1007/s11104-018-3764-9
47. Zhi X, Han Y, Mao S, Wang G, Feng L, Yang B, et al. Light spatial distribution in the canopy and crop development in cotton. PLoS One. 2014;9(11):e113409. Epub 2014/11/20. doi: 10.1371/journal.pone.0113409 25409026; PubMed Central PMCID: PMC4237451.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania