Real-time three-dimensional MRI for the assessment of dynamic carpal instability
Autoři:
Calvin B. Shaw aff001; Brent H. Foster aff002; Marissa Borgese aff001; Robert D. Boutin aff001; Cyrus Bateni aff001; Pattira Boonsri aff001; Christopher O. Bayne aff003; Robert M. Szabo aff003; Krishna S. Nayak aff004; Abhijit J. Chaudhari aff001
Působiště autorů:
Department of Radiology, University of California Davis, Sacramento, California, United States of America
aff001; Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
aff002; Department of Orthopaedic Surgery, University of California Davis, Sacramento, California, United States of America
aff003; Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222704
Souhrn
Background
Carpal instability is defined as a condition where wrist motion and/or loading creates mechanical dysfunction, resulting in weakness, pain and decreased function. When conventional methods do not identify the instability patterns, yet clinical signs of instability exist, the diagnosis of dynamic instability is often suggested to describe carpal derangement manifested only during the wrist’s active motion or stress. We addressed the question: can advanced MRI techniques provide quantitative means to evaluate dynamic carpal instability and supplement standard static MRI acquisition? Our objectives were to (i) develop a real-time, three-dimensional MRI method to image the carpal joints during their active, uninterrupted motion; and (ii) demonstrate feasibility of the method for assessing metrics relevant to dynamic carpal instability, thus overcoming limitations of standard MRI.
Methods
Twenty wrists (bilateral wrists of ten healthy participants) were scanned during radial-ulnar deviation and clenched-fist maneuvers. Images resulting from two real-time MRI pulse sequences, four sparse data-acquisition schemes, and three constrained image reconstruction techniques were compared. Image quality was assessed via blinded scoring by three radiologists and quantitative imaging metrics.
Results
Real-time MRI data-acquisition employing sparse radial sampling with a gradient-recalled-echo acquisition and constrained iterative reconstruction appeared to provide a practical tradeoff between imaging speed (temporal resolution up to 135 ms per slice) and image quality. The method effectively reduced streaking artifacts arising from data undersampling and enabled the derivation of quantitative measures pertinent to evaluating dynamic carpal instability.
Conclusion
This study demonstrates that real-time, three-dimensional MRI of the moving wrist is feasible and may be useful for the evaluation of dynamic carpal instability.
Klíčová slova:
Biology and life sciences – Research and analysis methods – Neuroscience – People and places – Population groupings – Professions – Anatomy – Medicine and health sciences – Diagnostic medicine – Medical personnel – Imaging techniques – Neuroimaging – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Biological tissue – Connective tissue – Musculoskeletal system – Body limbs – Arms – Tomography – Computed axial tomography – Skeletal joints – Ligaments – Radiologists
Zdroje
1. Taleisnik J. Post-traumatic carpal instability. Clin Orthop Relat Res. 1980;149(149):73–82. 6996885.
2. Volz RG, Lieb M, Benjamin J. Biomechanics of the wrist. Clin Orthop Relat Res. 1980;149(149):112–7. 7408289.
3. Ruby LK, Cooney WP 3rd, An KN, Linscheid RL, Chao EY. Relative motion of selected carpal bones: a kinematic analysis of the normal wrist. J Hand Surg Am. 1988;13(1):1–10. doi: 10.1016/0363-5023(88)90189-x 3351212.
4. Garcia-Elias M. Kinetic analysis of carpal stability during grip. Hand Clin. 1997;13(1):151–8. 9048190.
5. Gelberman RH, Cooney WP, Szabo RM. Carpal instability. Journal of Bone and Joint Surgery-American Volume. 2000;82a(4):578–94. WOS:000086193700013.
6. Schernberg F. Roentgenographic examination of the wrist: a systematic study of the normal, lax and injured wrist. Part 2: Stress views. J Hand Surg Br. 1990;15(2):220–8. Epub 1990/05/01. doi: 10.1016/0266-7681(90)90127-p 2366020.
7. Moser T, Dosch JC, Moussaoui A, Dietemann JL. Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol. 2007;188(5):1278–86. doi: 10.2214/AJR.06.0288 17449771.
8. Theumann NH, Etechami G, Duvoisin B, Wintermark M, Schnyder P, Favarger N, et al. Association between extrinsic and intrinsic carpal ligament injuries at MR arthrography and carpal instability at radiography: Initial observations. Radiology. 2006;238(3):950–7. doi: 10.1148/radiol.2383050013 WOS:000235520100023. 16424247
9. Laulan J, Marteau E, Bacle G. Wrist osteoarthritis. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S1–9. Epub 2015/01/19. doi: 10.1016/j.otsr.2014.06.025 25596986.
10. Taleisnik J. Current concepts review. Carpal instability. J Bone Joint Surg Am. 1988;70(8):1262–8. Epub 1988/09/01. 3047133.
11. Boutin RD, Buonocore MH, Immerman I, Ashwell Z, Sonico GJ, Szabo RM, et al. Real-time magnetic resonance imaging (MRI) during active wrist motion—initial observations. PloS one. 2013;8(12):e84004. Epub 2014/01/07. doi: 10.1371/journal.pone.0084004 24391865; PubMed Central PMCID: PMC3877133.
12. Chantelot C. Post-traumatic carpal instability. Orthop Traumatol Surg Res. 2014;100(1 Suppl):S45–53. Epub 2014/01/28. doi: 10.1016/j.otsr.2013.06.015 24461233.
13. Manuel J, Moran SL. The diagnosis and treatment of scapholunate instability. Hand clinics. 2010;26(1):129–44. Epub 2009/12/17. doi: 10.1016/j.hcl.2009.08.006 20006251.
14. Ramamurthy NK, Chojnowski AJ, Toms AP. Imaging in carpal instability. J Hand Surg Eur Vol. 2016;41(1):22–34. Epub 2015/11/21. doi: 10.1177/1753193415610515 26586689.
15. Hobby JL, Dixon AK, Bearcroft PW, Tom BD, Lomas DJ, Rushton N, et al. MR imaging of the wrist: effect on clinical diagnosis and patient care. Radiology. 2001;220(3):589–93. Epub 2001/08/30. doi: 10.1148/radiol.2203001429 11526253.
16. Quick HH, Ladd ME, Hoevel M, Bosk S, Debatin JF, Laub G, et al. Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging. 2002;15(6):710–5. Epub 2002/07/12. doi: 10.1002/jmri.10120 12112522.
17. Henrichon SS, Foster BH, Shaw C, Bayne CO, Szabo RM, Chaudhari AJ, et al. Dynamic MRI of the wrist in less than 20 seconds: normal midcarpal motion and reader reliability. Skeletal Radiol. 2019. doi: 10.1007/s00256-019-03266-1 31289900.
18. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95. Epub 2007/10/31. doi: 10.1002/mrm.21391 17969013.
19. Uecker M, Zhang S, Voit D, Karaus A, Merboldt KD, Frahm J. Real‐time MRI at a resolution of 20 ms. NMR in Biomedicine. 2010;23(8):986–94. doi: 10.1002/nbm.1585 20799371
20. Zhang S, Uecker M, Voit D, Merboldt KD, Frahm J. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction. J Cardiovasc Magn R. 2010;12(1):39. Artn 39 doi: 10.1186/1532-429x-12-39 WOS:000282340700001. 20615228
21. Lingala SG, Zhu Y, Kim YC, Toutios A, Narayanan S, Nayak KS. A fast and flexible MRI system for the study of dynamic vocal tract shaping. Magn Reson Med. 2017;77(1):112–25. Epub 2016/01/19. doi: 10.1002/mrm.26090 26778178; PubMed Central PMCID: PMC4947574.
22. Lingala SG, Zhu Y, Lim Y, Toutios A, Ji Y, Lo WC, et al. Feasibility of through-time spiral generalized autocalibrating partial parallel acquisition for low latency accelerated real-time MRI of speech. Magn Reson Med. 2017;78(6):2275–82. Epub 2017/02/12. doi: 10.1002/mrm.26611 28185301.
23. Draper CE, Besier TF, Santos JM, Jennings F, Fredericson M, Gold GE, et al. Using Real-Time MRI to Quantify Altered Joint Kinematics in Subjects with Patellofemoral Pain and to Evaluate the Effects of a Patellar Brace or Sleeve on Joint Motion. J Orthop Res. 2009;27(5):571–7. doi: 10.1002/jor.20790 WOS:000265009900002. 18985690
24. Shellock FG, Mink JH, Deutsch A, Pressman BD. Kinematic magnetic resonance imaging of the joints: techniques and clinical applications. Magn Reson Q. 1991;7(2):104–35. Epub 1991/04/01. 1911232.
25. Burnett KR, Davis CL, Read J. Dynamic Display of the Temporomandibular-Joint Meniscus by Using Fast-Scan Mr Imaging. Am J Roentgenol. 1987;149(5):959–62. doi: 10.2214/ajr.149.5.959 WOS:A1987K615900019. 3499801
26. Zhang S, Gersdorff N, Frahm J. Real-Time Magnetic Resonance Imaging of Temporomandibular Joint Dynamics. Open Medical Imaging Journal. 2011;5:1–7.
27. Fessler J. Image reconstruction toolbox. University of Michigan Ann Arbor, Michigan, USA. 2016 [cited 2]. http://web.eecs.umich.edu/fessler/irt/fessler.tgz]. Available from: http://web.eecs.umich.edu/fessler/irt/fessler.tgz
28. Belge M, Kilmer ME, Miller EL. Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Probl. 2002;18(4):1161–83. Pii S0266-5611(02)34465-4 doi: 10.1088/0266-5611/18/4/314 WOS:000177749300015.
29. Kuo CE, Wolfe SW. Scapholunate instability: current concepts in diagnosis and management. The Journal of hand surgery. 2008;33(6):998–1013. Epub 2008/07/29. doi: 10.1016/j.jhsa.2008.04.027 18656780.
30. Palmer AK, Werner FW. Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res. 1984;187(187):26–35. 6744728.
31. Kauer JM. The mechanism of the carpal joint. Clin Orthop Relat Res. 1986;202(202):16–26. 3955943.
32. Lee SK, Desai H, Silver B, Dhaliwal G, Paksima N. Comparison of radiographic stress views for scapholunate dynamic instability in a cadaver model. The Journal of hand surgery. 2011;36(7):1149–57. doi: 10.1016/j.jhsa.2011.05.009 21676555.
33. Weiss A-PC. Scapholunate ligament reconstruction using a bone-retinaculum-bone autograft. The Journal of hand surgery. 1998;23(2):205–15. doi: 10.1016/S0363-5023(98)80115-9 9556257
34. Schimmerl-Metz SM, Metz VM, Totterman SM, Mann FA, Gilula LA. Radiologic measurement of the scapholunate joint: implications of biologic variation in scapholunate joint morphology. J Hand Surg Am. 1999;24(6):1237–44. doi: 10.1053/jhsu.1999.1237 10584947.
35. Gilula LA, Weeks PM. Post-traumatic ligamentous instabilities of the wrist. Radiology. 1978;129(3):641–51. doi: 10.1148/129.3.641 725039.
36. Chennagiri RJ, Lindau TR. Assessment of scapholunate instability and review of evidence for management in the absence of arthritis. J Hand Surg Eur Vol. 2013;38(7):727–38. doi: 10.1177/1753193412473861 23340757.
37. Uecker M, Zhang S, Voit D, Merboldt K-D, Frahm J. Real-time MRI: recent advances using radial FLASH. Imaging in Medicine. 2012;4(4):461–76.
38. Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Med Image Anal. 2011;15(5):670–9. Epub 2011/07/12. doi: 10.1016/j.media.2011.06.001 21742542.
39. Jiang MF, Jin J, Liu F, Yu YY, Xia L, Wang YM, et al. Sparsity-constrained SENSE reconstruction: An efficient implementation using a fast composite splitting algorithm. Magn Reson Imaging. 2013;31(7):1218–27. doi: 10.1016/j.mri.2012.12.003 WOS:000322944600024. 23684962
40. Wollstein R, Werner FW, Rubenstein R, Nacca CR, Bilonick RA, Gilula LA. Scaphoid translation measurements in normal wrists. Hand Surg. 2013;18(2):179–87. doi: 10.1142/S0218810413500214 24164121.
41. Wolf JM. Treatment of scaphotrapezio-trapezoid arthritis. Hand Clin. 2008;24(3):301–6, vii. doi: 10.1016/j.hcl.2008.03.002 18675722.
42. Krupinski EA. Current perspectives in medical image perception. Atten Percept Psychophys. 2010;72(5):1205–17. doi: 10.3758/APP.72.5.1205 20601701; PubMed Central PMCID: PMC3881280.
43. Krupinski EA, Jiang Y. Anniversary paper: evaluation of medical imaging systems. Med Phys. 2008;35(2):645–59. doi: 10.1118/1.2830376 18383686.
44. Leng S, Zhao K, Qu M, An KN, Berger R, McCollough CH. Dynamic CT technique for assessment of wrist joint instabilities. Med Phys. 2011;38 Suppl 1(S1):S50. Epub 2012/01/26. doi: 10.1118/1.3577759 21978117; PubMed Central PMCID: PMC3616456.
45. Zhao K, Breighner R, Holmes D, Leng S, McCollough C, An KN. A Technique for Quantifying Wrist Motion Using Four-Dimensional Computed Tomography: Approach and Validation. J Biomech Eng-T Asme. 2015;137(7):074501. Artn 074501 doi: 10.1115/1.4030405 WOS:000356073400014. 25901447
46. Haims AH, Schweitzer ME, Morrison WB, Deely D, Lange RC, Osterman AL, et al. Internal derangement of the wrist: indirect MR arthrography versus unenhanced MR imaging. Radiology. 2003;227(3):701–7. doi: 10.1148/radiol.2273020398 12773676.
47. Mikic ZD. Arthrography of the wrist joint. An experimental study. J Bone Joint Surg Am. 1984;66(3):371–8. 6699053.
48. Kakar S, Breighner RE, Leng S, McCollough CH, Moran SL, Berger RA, et al. The Role of Dynamic (4D) CT in the Detection of Scapholunate Ligament Injury. J Wrist Surg. 2016;5(4):306–10. Epub 2016/10/26. doi: 10.1055/s-0035-1570463 27777822; PubMed Central PMCID: PMC5074832.
49. Rainbow MJ, Wolff AL, Crisco JJ, Wolfe SW. Functional kinematics of the wrist. J Hand Surg Eur Vol. 2016;41(1):7–21. Epub 2015/11/17. doi: 10.1177/1753193415616939 26568538.
50. Tosun O, Cilengir AH, Dirim Mete B, Uluc ME, Oyar O, Tosun A. The effect of ulnar variance on scapholunate and capitolunate angles. Acta Radiol. 2017;58(11):1358–63. Epub 2017/02/10. doi: 10.1177/0284185117692175 28181465.
51. Lingala SG, DiBella E, Adluru G, McGann C, Jacob M. Accelerating free breathing myocardial perfusion MRI using multi coil radial k− t SLR. Physics in Medicine and Biology. 2013;58(20):7309. doi: 10.1088/0031-9155/58/20/7309 24077063
52. Poddar S, Jacob M. Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM). IEEE Trans Med Imaging. 2016;35(4):1106–26. doi: 10.1109/TMI.2015.2509245 WOS:000374164800017. 26685228
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania