Plasma metabolite biomarkers for multiple system atrophy and progressive supranuclear palsy
Autoři:
Akio Mori aff001; Kei-Ichi Ishikawa aff001; Shinji Saiki aff001; Taku Hatano aff001; Yutaka Oji aff001; Ayami Okuzumi aff001; Motoki Fujimaki aff001; Takahiro Koinuma aff001; Shin-Ichi Ueno aff001; Yoko Imamichi aff001; Nobutaka Hattori aff001
Působiště autorů:
Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223113
Souhrn
Radiological biomarkers have been reported for multiple system atrophy and progressive supranuclear palsy, but serum/plasma biomarkers for each disorder have not been established. In this context, we performed a pilot study to identify disease-specific plasma biomarkers for multiple system atrophy and progressive supranuclear palsy. Plasma samples collected from 20 progressive supranuclear palsy patients, 16 multiple system atrophy patients and 20 controls were investigated by comprehensive metabolome analysis using capillary electrophoresis mass spectrometry and liquid chromatography mass spectrometry. Medication data were obtained from patients with multiple system atrophy and progressive supranuclear palsy, and correlations with associated metabolites were examined. Receiver operating characteristics curve analyses were used to investigate diagnostic values for each disorder. The levels of 15 and eight metabolites were significantly changed in multiple system atrophy and progressive supranuclear palsy, respectively. Multiple system atrophy was mainly characterized by elevation of long-chain fatty acids and neurosteroids, whereas progressive supranuclear palsy was characterized by changes in the level of oxidative stress-associated metabolites. Receiver operating characteristic curve analyses revealed that patients with multiple system atrophy or progressive supranuclear palsy were effectively differentiated from controls by 15 or 7 metabolites, respectively. Disease-specific metabolic changes of multiple system atrophy and progressive supranuclear palsy were identified. These biomarker sets should be replicated in a larger sample.
Klíčová slova:
Drug metabolism – Fatty acids – Biomarkers – Metabolites – Metabolomics – Parkinson disease – Atrophy – Metabolic analysis
Zdroje
1. Krismer F, Wenning GK. Multiple system atrophy: insights into a rare and debilitating movement disorder. Nature reviews Neurology. 2017;13(4):232–43. Epub 2017/03/18. doi: 10.1038/nrneurol.2017.26 28303913.
2. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. Neurology. 1992;42(6):1142–6. Epub 1992/06/01. doi: 10.1212/wnl.42.6.1142 1603339.
3. Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Hoglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. The Lancet Neurology. 2017;16(7):552–63. Epub 2017/06/28. doi: 10.1016/S1474-4422(17)30157-6 28653647; PubMed Central PMCID: PMC5802400.
4. Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. Journal of neurology, neurosurgery, and psychiatry. 2018;89(2):175–84. Epub 2017/09/02. doi: 10.1136/jnnp-2017-315813 28860330.
5. Fujimaki M, Saiki S, Li Y, Kaga N, Taka H, Hatano T, et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology. 2018;90(5):e404–e11. Epub 2018/01/05. doi: 10.1212/WNL.0000000000004888 29298852; PubMed Central PMCID: PMC5791797.
6. Compta Y, Giraldo DM, Munoz E, Antonelli F, Fernandez M, Bravo P, et al. Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism & related disorders. 2018;46:16–23. Epub 2017/11/07. doi: 10.1016/j.parkreldis.2017.10.010 29107645.
7. Mitsui J, Matsukawa T, Yasuda T, Ishiura H, Tsuji S. Plasma Coenzyme Q10 Levels in Patients With Multiple System Atrophy. JAMA neurology. 2016;73(8):977–80. Epub 2016/07/01. doi: 10.1001/jamaneurol.2016.1325 27356913.
8. Constantinescu R, Rosengren L, Johnels B, Zetterberg H, Holmberg B. Consecutive analyses of cerebrospinal fluid axonal and glial markers in Parkinson's disease and atypical Parkinsonian disorders. Parkinsonism & related disorders. 2010;16(2):142–5. Epub 2009/08/04. doi: 10.1016/j.parkreldis.2009.07.007 19647470.
9. Laurens B, Constantinescu R, Freeman R, Gerhard A, Jellinger K, Jeromin A, et al. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative. Neurobiology of disease. 2015;80:29–41. Epub 2015/05/20. doi: 10.1016/j.nbd.2015.05.004 25982836.
10. Havelund JF, Heegaard NHH, Faergeman NJK, Gramsbergen JB. Biomarker Research in Parkinson's Disease Using Metabolite Profiling. Metabolites. 2017;7(3). Epub 2017/08/12. doi: 10.3390/metabo7030042 28800113; PubMed Central PMCID: PMC5618327.
11. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6. Epub 2008/08/30. doi: 10.1212/01.wnl.0000324625.00404.15 18725592; PubMed Central PMCID: PMC2676993.
12. Osaki Y, Ben-Shlomo Y, Lees AJ, Daniel SE, Colosimo C, Wenning G, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Movement disorders: official journal of the Movement Disorder Society. 2004;19(2):181–9. Epub 2004/02/24. doi: 10.1002/mds.10680 14978673.
13. Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, et al. Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson's disease. Scientific reports. 2017;7(1):7328. Epub 2017/08/06. doi: 10.1038/s41598-017-06767-y 28779141; PubMed Central PMCID: PMC5544708.
14. Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, et al. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Molecular bioSystems. 2008;4(2):135–47. Epub 2008/01/24. doi: 10.1039/b714176a 18213407
15. Jones LL, McDonald DA, Borum PR. Acylcarnitines: role in brain. Progress in lipid research. 2010;49(1):61–75. Epub 2009/09/02. doi: 10.1016/j.plipres.2009.08.004 19720082.
16. Burte F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, et al. metabolic profiling of Parkinson's disease and mild cognitive impairment. Movement disorders: official journal of the Movement Disorder Society. 2017;32(6):927–32. Epub 2017/04/11. doi: 10.1002/mds.26992 28394042; PubMed Central PMCID: PMC5485028.
17. Farmer K, Smith CA, Hayley S, Smith J. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson's Disease. International journal of molecular sciences. 2015;16(8):18865–77. Epub 2015/08/15. doi: 10.3390/ijms160818865 26274953; PubMed Central PMCID: PMC4581276.
18. Weng JH, Chung BC. Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids. 2016;111:54–9. Epub 2016/02/05. doi: 10.1016/j.steroids.2016.01.017 26844377.
19. Wang MJ, Huang HM, Chen HL, Kuo JS, Jeng KC. Dehydroepiandrosterone inhibits lipopolysaccharide-induced nitric oxide production in BV-2 microglia. Journal of neurochemistry. 2001;77(3):830–8. Epub 2001/05/02. doi: 10.1046/j.1471-4159.2001.00295.x 11331412.
20. Akwa Y, Ladurelle N, Covey DF, Baulieu EE. The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proceedings of the National Academy of Sciences of the United States of America. 2001;98(24):14033–7. Epub 2001/11/22. doi: 10.1073/pnas.241503698 11717462; PubMed Central PMCID: PMC61162.
21. Bazinet RP, Laye S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature reviews Neuroscience. 2014;15(12):771–85. Epub 2014/11/13. doi: 10.1038/nrn3820 25387473.
22. Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, et al. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clinical endocrinology. 2012;76(5):674–82. Epub 2011/10/01. doi: 10.1111/j.1365-2265.2011.04244.x 21958081.
23. Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease. Journal of Alzheimer's disease: JAD. 2012;29(3):691–7. Epub 2012/04/03. doi: 10.3233/JAD-2012-110629 22466064; PubMed Central PMCID: PMC3409580.
24. Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL. Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer's disease. Journal of proteomics. 2014;104:37–47. Epub 2014/01/30. doi: 10.1016/j.jprot.2014.01.014 24473279.
25. Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Movement disorders: official journal of the Movement Disorder Society. 2014;29(14):1720–41. Epub 2014/10/10. doi: 10.1002/mds.26052 25297524.
26. Angelova PR, Barilani M, Lovejoy C, Dossena M, Vigano M, Seresini A, et al. Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox biology. 2018;14:474–84. Epub 2017/11/03. doi: 10.1016/j.redox.2017.10.016 29096320; PubMed Central PMCID: PMC5680522.
27. Oropesa-Ruiz JM, Huertas-Fernandez I, Jesus S, Caceres-Redondo MT, Vargas-Gonzalez L, Carrillo F, et al. Low serum uric acid levels in progressive supranuclear palsy. Movement disorders: official journal of the Movement Disorder Society. 2016;31(3):402–5. Epub 2015/12/22. doi: 10.1002/mds.26466 26686202.
28. Pereira EC, Ferderbar S, Bertolami MC, Faludi AA, Monte O, Xavier HT, et al. Biomarkers of oxidative stress and endothelial dysfunction in glucose intolerance and diabetes mellitus. Clinical biochemistry. 2008;41(18):1454–60. Epub 2008/09/17. doi: 10.1016/j.clinbiochem.2008.08.074 18793627.
29. Jesus M, Martins AP, Gallardo E, Silvestre S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. Journal of analytical methods in chemistry. 2016;2016:4156293. Epub 2017/01/25. doi: 10.1155/2016/4156293 28116217; PubMed Central PMCID: PMC5225340 manuscript.
30. LeWitt PA, Li J, Lu M, Guo L, Auinger P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017;88(9):862–869. doi: 10.1212/WNL.0000000000003663 28179471
31. Han W, Sapkota S, Camicioli R, Dixon RA, Li L. Profiling novel metabolic biomarkers for Parkinson's disease using in-depth metabolomic analysis. Mov Disord 2017;32(12):1720–1728. doi: 10.1002/mds.27173 28880465
32. Wuolikainen A, Jonsson P, Ahnlund M, et al. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Mol Biosyst 2016;12(4):1287–1298. doi: 10.1039/c5mb00711a 26883206
33. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N. Identification of novel biomarkers for Parkinson's disease by metabolomic technologies. J Neurol Neurosurg Psychiatry 2016;87(3):295–301. doi: 10.1136/jnnp-2014-309676 25795009
34. Trupp M, Jonsson P, Ohrfelt A, et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson's disease. J Parkinsons Dis 2014;4(3):549–560. doi: 10.3233/JPD-140389 24927756
35. Ahmed SS, Santosh W, Kumar S, Christlet HT. Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 2009;16:63. doi: 10.1186/1423-0127-16-63 19594911
36. Johansen KK, Wang L, Aasly JO, et al. Metabolomic profiling in LRRK2-related Parkinson's disease. PLoS One 2009;4(10):e7551. doi: 10.1371/journal.pone.0007551 19847307
37. Bogdanov M, Matson WR, Wang L, et al. Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 2008;131(Pt 2):389–396. doi: 10.1093/brain/awm304 18222993
38. Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function—a meta-analysis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association. 2006;21(9):2446–51. Epub 2006/06/13. doi: 10.1093/ndt/gfl292 16766542.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania