#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Differential metabolomics networks analysis of menopausal status


Autoři: Xiujuan Cui aff001;  Xiaoyan Yu aff001;  Guang Sun aff003;  Ting Hu aff004;  Sergei Likhodii aff005;  Jingmin Zhang aff001;  Edward Randell aff006;  Xiang Gao aff007;  Zhaozhi Fan aff008;  Weidong Zhang aff001
Působiště autorů: School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China aff001;  Department of Pharmacy, Daqing Oil-Field General Hospital, Daqing, China aff002;  Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada aff003;  Department of Computer Science, Memorial University, St John’s, NL, Canada aff004;  BC Provincial Toxicology Centre, Provincial Health Services Authority, Vancouver, British Columbia, Canada aff005;  Department of Laboratory Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada aff006;  College of Life Sciences, Qingdao University, Qingdao, China aff007;  Department of Mathematics and Statistics, Memorial University, St. John’s, NL, Canada aff008;  Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada aff009
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222353

Souhrn

Menopause is an endocrine-related transition that induces a number of physiological and potentially pathological changes in middle-aged and elderly women. The intention of this research was to investigate the influence of menopause on the intricate relationships between major biochemical metabolites. The study involved metabolic profiling of 186 metabolic markers measured in blood plasma collected from 120 healthy female participants. We developed a method of network analysis using differential correlation that enabled us to detect and characterize differences in metabolites and changes in inter-relationships in pre- and post-menopausal women. A topological analysis was performed on the differential network that uncovered metabolite differences in pre-and post-menopausal women. In this analysis, our method identified two key metabolites, sphingomyelins and phosphatidylcholines, which may be useful in directing further studies into menopause-specific differences in the metabolome, and how these differences may underlie the body's response to stress and disease following the transition from pre- to post-menopausal status for women.

Klíčová slova:

Biology and life sciences – Biochemistry – Research and analysis methods – Molecular biology – Molecular biology techniques – Computer and information sciences – Network analysis – Medicine and health sciences – Physiology – Molecular biology assays and analysis techniques – Endocrinology – Pharmacology – Pharmacokinetics – Drug metabolism – Lipids – Metabolism – Endocrine physiology – Menopause – Metabolites – Amino acid analysis – Metabolomics – Sphingolipids – Metabolic networks


Zdroje

1. Twiss JJ, Wegner J, Hunter M, Kelsay M, Rathe-Hart M, Salado W. Perimenopausal symptoms, quality of life, and health behaviors in users and nonusers of hormone therapy. J Am Acad Nurse Pract. 2007;19: 602–613. JAAN260 [pii]. doi: 10.1111/j.1745-7599.2007.00260.x 17970860

2. Sammaritano LR. Menopause in patients with autoimmune diseases. Autoimmun Rev. 2012;11: A430–6. doi: 10.1016/j.autrev.2011.11.006 22120060

3. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage. 2005;13: 769–781. S1063-4584(05)00112-3 [pii]. doi: 10.1016/j.joca.2005.04.014 15978850

4. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41: 778–799. doi: 10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V 9588729

5. Zhang W, Sun G, Likhodii S, Aref-Eshghi E, Harper PE, Randell E, et al. Metabolomic analysis of human synovial fluid and plasma reveals that phosphatidylcholine metabolism is associated with both osteoarthritis and diabetes mellitus. metabolomics. 2016;12: 24.

6. Zhang W, Sun G, Likhodii S, Liu M, Aref-Eshghi E, Harper PE, et al. Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthritis Cartilage. 2016;24: 827–834. doi: 10.1016/j.joca.2015.12.004 26708258

7. Zhang L, Wei TT, Li Y, Li J, Fan Y, Huang FQ, et al. Functional Metabolomics Characterizes a Key Role for N-Acetylneuraminic Acid in Coronary Artery Diseases. Circulation. 2018;137: 1374–1390. doi: 10.1161/CIRCULATIONAHA.117.031139 29212895

8. Pinto RC. Chemometrics Methods and Strategies in Metabolomics. Adv Exp Med Biol. 2017;965: 163–190. doi: 10.1007/978-3-319-47656-8_7 28132180

9. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461: 218–223. doi: 10.1038/nature08454 19741703

10. Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform. 2006;7: 151–158. bbl009 [pii]. doi: 10.1093/bib/bbl009 16772265

11. Gao X, Zhang W, Wang Y, Pedram P, Cahill F, Zhai G, et al. Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals. Nutr Metab (Lond). 2016;13: 33-016-0095-9. eCollection 2016. doi: 10.1186/s12986-016-0095-9 27175209

12. Zhang W, Likhodii S, Zhang Y, Aref-Eshghi E, Harper PE, Randell E, et al. Classification of osteoarthritis phenotypes by metabolomics analysis. BMJ Open. 2014;4: e006286-2014-006286. doi: 10.1136/bmjopen-2014-006286 25410606

13. Hu T, Oksanen K, Zhang W, Randell E, Furey A, Sun G, et al. An evolutionary learning and network approach to identifying key metabolites for osteoarthritis. PLoS Comput Biol. 2018;14: e1005986. doi: 10.1371/journal.pcbi.1005986 29494586

14. Hu T, Zhang W, Fan Z, Sun G, Likhodi S, Randell E, et al. Metabolomics Differential Correlation Network Analysis of Osteoarthritis. Pac Symp Biocomput. 2016;21: 120–131. 9789814749411_0012 [pii]. 26776179

15. Auro K, Joensuu A, Fischer K, Kettunen J, Salo P, Mattsson H, et al. A metabolic view on menopause and ageing. Nat Commun. 2014;5: 4708. doi: 10.1038/ncomms5708 25144627

16. Yamatani H, Takahashi K, Yoshida T, Soga T, Kurachi H. Differences in the fatty acid metabolism of visceral adipose tissue in postmenopausal women. Menopause. 2014;21: 170–176. doi: 10.1097/GME.0b013e318296431a 23760430

17. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, et al. Human serum metabolic profiles are age dependent. Aging Cell. 2012;11: 960–967. doi: 10.1111/j.1474-9726.2012.00865.x 22834969

18. Lizardo DY, Parisi LR, Li N, Atilla-Gokcumen GE. Noncanonical Roles of Lipids in Different Cellular Fates. Biochemistry. 2018;57: 22–29. doi: 10.1021/acs.biochem.7b00862 29019646

19. Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu TS, Stabler SP, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007;85: 1275–1285. 85/5/1275 [pii]. doi: 10.1093/ajcn/85.5.1275 17490963

20. Zeisel SH, Mar MH, Zhou Z, da Costa KA. Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J Nutr. 1995;125: 3049–3054. doi: 10.1093/jn/125.12.3049 7500183

21. Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev. 2006;64: 197–203. doi: 10.1111/j.1753-4887.2006.tb00202.x 16673755

22. Mattsson C, Olsson T. Estrogens and glucocorticoid hormones in adipose tissue metabolism. Curr Med Chem. 2007;14: 2918–2924. doi: 10.2174/092986707782359972 18045137

23. Santosa S, Jensen MD. Adipocyte fatty acid storage factors enhance subcutaneous fat storage in postmenopausal women. Diabetes. 2013;62: 775–782. doi: 10.2337/db12-0912 23209188

24. Maynar M, Mahedero G, Maynar I, Maynar JI, Tuya IR, Caballero MJ. Menopause-induced changes in lipid fractions and total fatty acids in plasma. Endocr Res. 2001;27: 357–365. 11678583

25. Milewicz A, Tworowska U, Demissie M. Menopausal obesity—myth or fact? Climacteric. 2001;4: 273–283. 11770183


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#