#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

De novo transcriptome analysis of Viola ×wittrockiana exposed to high temperature stress


Autoři: Xiaohua Du aff001;  Xiaopei Zhu aff001;  Yaping Yang aff001;  Yanli Wang aff001;  Paul Arens aff003;  Huichao Liu aff001
Působiště autorů: School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China aff001;  Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China aff002;  Wageningen University & Research, Wageningen, The Netherlands aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222344

Souhrn

Around the world, pansies are one of the most popular garden flowers, but they are generally sensitive to high temperatures, and this limits the practicality of planting them during the warmest days of the year. However, a few pansy germplasms with improved heat tolerance have been discovered or bred, but the mechanisms of their heat resistance are not understood. In this study, we investigated the transcript profiles of a heat-tolerant pansy inbred line, DFM16, in response to high temperatures using RNAseq. Approximately 55.48 Gb of nucleotide data were obtained and assembled into 167,576 unigenes with an average length of 959 bp, of which, 5,708 genes were found to be differentially expressed after heat treatments. Real-time qPCR was performed to validate the expression profiles of the selected genes. Nine metabolic pathways were found to be significantly enriched, in the analysis of the differentially expressed genes. Several potentially interesting genes that encoded putative transcription regulators or key components involving heat shock protein (HSP), heat shock transcription factors (HSF), and antioxidants biosynthesis, were identified. These genes were highlighted to indicate their significance in response to heat stress and will be used as candidate genes to improve pansy heat-tolerance in the future.

Klíčová slova:

Gene expression – DNA-binding proteins – Metabolic processes – Sequence databases – Cellular stress responses – Heat treatment – Thermal stresses – Heat shock response


Zdroje

1. Kessler JR, Hagan JA, Cobb P. Pansy production and marketing. Southeastern Floriculture, 1999; July/August:29–39. Available from: https://hortscans.ces.ncsu.edu/library/floriculture/doc_id/846/Pansy-Production-and-Marketing.pdf

2. Peng H, Gao Y, Du H, Qian H, Wang P. Effects of heat stress on related physiological indexes of pansy cultivar seedlings. Journal of Shanghai Jiaotong University (Agricultural Science). 2012;30(6):66–71.

3. Song XM, Liu GF, Duan WK, Liu TK, Huang ZN, Ren J, et al. Genome-wide identification classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Molecular Genetics and Genomics. 2014;289:541–551. doi: 10.1007/s00438-014-0833-5 24609322

4. Banerjee A, Roychoudhury A, Krishnamoorth S. Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants. Plant Biotechnology Reports. 2016;10:185–205.

5. Allakhverdiev SI, Kreslavski VD, Klimov W, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res. 2008;98(1–3):541–550. doi: 10.1007/s11120-008-9331-0 18649006

6. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences. 2013;14(5): 9643–9684. doi: 10.3390/ijms14059643 23644891

7. Wang L, Yu X, Wang H, Lu YZ, Ruiter MD, Prins M, et al. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics. 2011;12(1): 289. doi: 10.1186/1471-2164-12-289 21639890

8. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. 2012; 63(4): 1593–1608. doi: 10.1093/jxb/err460 22291134

9. Stief A, Brzezinka K, Lamke J, Baurle I. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling and Behavior. 2014;9(10): e970430. doi: 10.4161/15592316.2014.970430 25482804

10. Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucinezipper (bZIP) transcription factors in plant abiotic stress. Protoplasma. 2017;254:3–16. doi: 10.1007/s00709-015-0920-4 26669319

11. Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. 2017;162:2–12. doi: 10.1111/ppl.12540 28042678

12. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 2004;55(1): 373–399.

13. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 2010;48(12): 909–930. doi: 10.1016/j.plaphy.2010.08.016 20870416

14. Almeselmani M, Deshmukh P, Sairam R. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agronomica Hungarica. 2009;57(1):1–14.

15. Baniwal SK, Bharti K, Chan KY, Fauth M, Gangul A, Kotak S, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences. 2004;29(4):471–487. doi: 10.1007/bf02712120 15625403

16. Qu AL, Ding YF, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochemical & Biophysical Research Communications. 2013;432(2): 203–207.

17. Kotak S, Larkindale J, Lee U, Von KP, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Current Opinion in Plant Biology. 2007;10(3): 310–316. doi: 10.1016/j.pbi.2007.04.011 17482504

18. Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, et al. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics. 2019;132:1607–1638. doi: 10.1007/s00122-019-03331-2 30941464

19. Grover A, Mittal D, Negi M, Lavania D. Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Science. 2013;205–206:38–47. doi: 10.1016/j.plantsci.2013.01.005 23498861

20. Zou Q. Guidance of Plant Physiological and Biochemical Experiments. 1st ed. Beijing: China Agriculture Press;1995.

21. Song A, Zhu X, Chen F, Gao H, Jiang J, & Chen S. A chrysanthemum heat shock protein confers tolerance to abiotic stress. International Journal of Molecular Sciences, 2014; 15(3): 5063–5078. doi: 10.3390/ijms15035063 24663057

22. Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. Available from: doi: 10.1186/1471-2105-12-323 21816040

23. Young M D, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology. 2010;11:R14. Available from: doi: 10.1186/gb-2010-11-2-r14 20132535

24. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:3787–3793. doi: 10.1093/bioinformatics/bti430 15817693

25. Livak KJ, and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. Available from: doi: 10.1006/meth.2001.1262 11846609

26. Chen H. The Heat resistant resources preliminary screening and Expression analysis of HSP70 gene of pansy. M.Sc. Thesis, Henan Institute of Science and Technology. 2016. Available from: http://cdmd.cnki.com.cn/Article/CDMD-10467-1016069264.htm.

27. Finka A, Mattoo RUH, Goloubinoff P. Meta-analysis of heat-and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperon. 2011;16 (1):15–31.

28. Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, et al. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Reports. 2012;31(8):1473–1484. doi: 10.1007/s00299-012-1262-8 22534681

29. Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q. Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biologia Plantarum. 2010;54(1):105–111.

30. Montero-Barrientos M, Hermosa R, Cardoza RE, Santiago Gutiérrez, Carlos Nicolás, Monte E. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology. 2010;167(8): 659–665. doi: 10.1016/j.jplph.2009.11.012 20080316

31. Chang CC, Huang PS, Lin HR, Lu CH. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant and Cell Physiology. 2007;48(8): 1098–1107. doi: 10.1093/pcp/pcm080 17597080

32. Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta. 2012;1819(2): 104–119. doi: 10.1016/j.bbagrm.2011.10.002 22033015

33. Koskull-Do ring PV, Scharf KD, Nover L. The diversity of plant heat stress transcription factors. Trends Plant Science. 2007;12(10):452–457.

34. Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiolpgy. 2011;157(3): 1243–1254.

35. Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany. 2014;65(5):1229–1240. doi: 10.1093/jxb/ert375 24253197

36. Miller G, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 2007;144(4): 1777–1785. doi: 10.1104/pp.107.101436 17556505

37. Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L. Transgenic tomato (lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. Journal of Applied Horticulture. 2006;8(2):87–90.

38. Sun WH, Duan M, Li F, Shu DF, Yang S, Meng QW. Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biologia Plantarum (Prague). 2010;54(4):614–620.

39. Vanderauwera S, Suzuki N, Miller G, Van de Cotte B, Morsa S, Ravanat JL, et al. Extranuclear protection of chromosomal DNA from oxidative stress. Proceedings of the National Academy of Sciences. 2011;108(4):1711–1716.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#