Mitochondrial fragmentation and network architecture in degenerative diseases
Autoři:
Syed I. Shah aff001; Johanna G. Paine aff001; Carlos Perez aff001; Ghanim Ullah aff001
Působiště autorů:
Department of Physics, University of South Florida, Tampa, FL, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223014
Souhrn
Fragmentation of mitochondrial network has been implicated in many neurodegenerative, renal, and metabolic diseases. However, a quantitative measure of the microscopic parameters resulting in the impaired balance between fission and fusion of mitochondria and consequently the fragmented networks in a wide range of pathological conditions does not exist. Here we present a comprehensive analysis of mitochondrial networks in cells with Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), optic neuropathy (OPA), diabetes/cancer, acute kidney injury, Ca2+ overload, and Down Syndrome (DS) pathologies that indicates significant network fragmentation in all these conditions. Furthermore, we found key differences in the way the microscopic rates of fission and fusion are affected in different conditions. The observed fragmentation in cells with AD, HD, DS, kidney injury, Ca2+ overload, and diabetes/cancer pathologies results from the imbalance between the fission and fusion through lateral interactions, whereas that in OPA, PD, and ALS results from impaired balance between fission and fusion arising from longitudinal interactions of mitochondria. Such microscopic difference leads to major disparities in the fine structure and topology of the network that could have significant implications for the way fragmentation affects various cell functions in different diseases.
Klíčová slova:
Mouse models – Mitochondria – Fibroblasts – Kidneys – Cell fusion – Cytopathology – Huntington disease
Zdroje
1. Bakeeva L, Chentsov YS, Skulachev V. Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1978;501(3):349–69.
2. Amchenkova AA, Bakeeva LE, Chentsov YS, Skulachev VP, Zorov DB. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. The Journal of cell biology. 1988;107(2):481–95. doi: 10.1083/jcb.107.2.481 3417757
3. Szabadkai G, Simoni AM, Rizzuto R. Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum. Journal of Biological Chemistry. 2003;278(17):15153–61. doi: 10.1074/jbc.M300180200 12586823
4. Anesti V, Scorrano L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(5–6):692–9.
5. Yang J-S, Kim J, Park S, Jeon J, Shin Y-E, Kim S. Spatial and functional organization of mitochondrial protein network. Scientific reports. 2013;3:1403. doi: 10.1038/srep01403 23466738
6. Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. Embo Journal. 2002;21(7):1616–27. doi: 10.1093/emboj/21.7.1616 WOS:000174992000012. 11927546
7. Collins TJ, Lipp P, Berridge MJ, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within single cells. Journal of Physiology-London. 2002;539:98p–9p. WOS:000174618200135.
8. Bereiterhahn J, Voth M. Dynamics of Mitochondria in Living Cells—Shape Changes, Dislocations, Fusion, and Fission of Mitochondria. Microscopy Research and Technique. 1994;27(3):198–219. doi: 10.1002/jemt.1070270303 WOS:A1994MV92300002. 8204911
9. Karbowski M, Youle R. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell death and differentiation. 2003;10(8):870. doi: 10.1038/sj.cdd.4401260 12867994
10. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology. 2007;8(11):870. doi: 10.1038/nrm2275 17928812
11. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, et al. Mitochondrial bioenergetics and structural network organization. Journal of cell science. 2007;120(5):838–48.
12. Liao P-C, Tandarich LC, Hollenbeck PJ. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila. PloS one. 2017;12(5):e0178105. doi: 10.1371/journal.pone.0178105 28542430
13. Debattisti V, Gerencser AA, Saotome M, Das S, Hajnóczky G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell reports. 2017;21(6):1667–80. doi: 10.1016/j.celrep.2017.10.060 29117569
14. Deheshi S, Dabiri B, Fan S, Tsang M, Rintoul GL. Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ros-mediated remodeling. Journal of Neurochemistry. 2015;133(5):684–99. doi: 10.1111/jnc.13090 WOS:000353570500007. 25761412
15. Schon EA, Przedborski S. Mitochondria: the next (neurode) generation. Neuron. 2011;70(6):1033–53. doi: 10.1016/j.neuron.2011.06.003 21689593
16. Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neuroscience letters. 2017.
17. Guardia‐Laguarta C, Area‐Gomez E, Schon EA, Przedborski S. A new role for α‐synuclein in Parkinson's disease: Alteration of ER–mitochondrial communication. Movement Disorders. 2015;30(8):1026–33. doi: 10.1002/mds.26239 25952565
18. Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nature cell biology. 2018:1. doi: 10.1038/s41556-017-0025-8
19. Bertholet A, Delerue T, Millet A, Moulis M, David C, Daloyau M, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiology of disease. 2016;90:3–19. doi: 10.1016/j.nbd.2015.10.011 26494254
20. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience. 2008;9(7):505. doi: 10.1038/nrn2417 18568013
21. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3):548–62. doi: 10.1016/j.cell.2007.06.026 17693261
22. Hung CH-L, Cheng SS-Y, Cheung Y-T, Wuwongse S, Zhang NQ, Ho Y-S, et al. A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox biology. 2018;14:7–19. doi: 10.1016/j.redox.2017.08.010 28837882
23. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nature reviews Molecular cell biology. 2005;6(8):657. doi: 10.1038/nrm1697 16025099
24. Perfettini J-L, Roumier T, Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends in cell biology. 2005;15(4):179–83. doi: 10.1016/j.tcb.2005.02.005 15817372
25. Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Human molecular genetics. 2011;20(13):2495–509. doi: 10.1093/hmg/ddr139 21459773
26. Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. The American journal of pathology. 2008;173(2):470–82. doi: 10.2353/ajpath.2008.071208 18599615
27. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, et al. Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences. 2008;105(49):19318–23.
28. Wang X, Su B, Lee H-g, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. Journal of Neuroscience. 2009;29(28):9090–103. doi: 10.1523/JNEUROSCI.1357-09.2009 19605646
29. Selfridge JE, Lezi E, Lu J, Swerdlow RH. Role of mitochondrial homeostasis and dynamics in Alzheimer's disease. Neurobiology of disease. 2013;51:3–12. doi: 10.1016/j.nbd.2011.12.057 22266017
30. Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B, et al. Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer’s disease and related models. Proceedings of the National Academy of Sciences. 2013:201300677.
31. Area-Gomez E, Schon EA. On the pathogenesis of Alzheimer's disease: the MAM hypothesis. The FASEB Journal. 2017;31(3):864–7. doi: 10.1096/fj.201601309 28246299
32. Aon MA, Cortassa S, Akar FG, Brown DA, Zhou L, O'Rourke B. From mitochondrial dynamics to arrhythmias. International Journal of Biochemistry & Cell Biology. 2009;41(10):1940–8. doi: 10.1016/j.biocel.2009.02.016 WOS:000270351100021. 19703656
33. Grandemange S, Herzig S, Martinou JC. Mitochondrial dynamics and cancer. Seminars in Cancer Biology. 2009;19(1):50–6. doi: 10.1016/j.semcancer.2008.12.001 WOS:000264608700008. 19138741
34. Su B, Wang XL, Zheng L, Perry G, Smith MA, Zhu XW. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta-Molecular Basis of Disease. 2010;1802(1):135–42. doi: 10.1016/j.bbadis.2009.09.013 WOS:000273138500015. 19799998
35. Yoon Y, Galloway CA, Jhun BS, Yu TZ. Mitochondrial Dynamics in Diabetes. Antioxidants & Redox Signaling. 2011;14(3):439–57. doi: 10.1089/ars.2010.3286 WOS:000285876900010. 20518704
36. Zamponi E, Zamponi N, Coskun P, Quassollo G, Lorenzo A, Cannas SA, et al. Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells. Aging Cell. 2018;17(5). UNSP e12812 doi: 10.1111/acel.12812 WOS:000445599100008.
37. Izzo A, Mollo N, Nitti M, Paladino S, Calì G, Genesio R, et al. Mitochondrial dysfunction in down syndrome: molecular mechanisms and therapeutic targets. Molecular Medicine. 2018;24(1):2. doi: 10.1186/s10020-018-0004-y 30134785
38. Kann O, Kovács R. Mitochondria and neuronal activity. American Journal of Physiology-Cell Physiology. 2007;292(2):C641–C57. doi: 10.1152/ajpcell.00222.2006 17092996
39. Li Z, Okamoto K-I, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–87. doi: 10.1016/j.cell.2004.11.003 15607982
40. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787. doi: 10.1038/nature05292 17051205
41. Sheng Z-H, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature Reviews Neuroscience. 2012;13(2):77. doi: 10.1038/nrn3156 22218207
42. Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2012;1817(10):1833–8.
43. Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity. Journal of Biological Chemistry. 2003.
44. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. Journal of Biological Chemistry. 2003;278(10):7743–6. doi: 10.1074/jbc.C200677200 12509422
45. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. Journal of Biological Chemistry. 2005;280(28):26185–92. doi: 10.1074/jbc.M503062200 15899901
46. Benard G, Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxidants & redox signaling. 2008;10(8):1313–42.
47. Cheung EC, McBride HM, Slack RS. Mitochondrial dynamics in the regulation of neuronal cell death. Apoptosis. 2007;12(5):979–92. doi: 10.1007/s10495-007-0745-5 17453163
48. Jahani‐Asl A, Slack RS. The phosphorylation state of Drp1 determines cell fate. EMBO reports. 2007;8(10):912–3. doi: 10.1038/sj.embor.7401077 17906671
49. Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human molecular genetics. 2009;18(R2):R169–R76. doi: 10.1093/hmg/ddp326 19808793
50. Capaldi RA, Murray J, Byrne L, Janes MS, Marusich MF. Immunological approaches to the characterization and diagnosis of mitochondrial disease. Mitochondrion. 2004;4(5):417–26.
51. Koopman WJ, Visch H-J, Verkaart S, van den Heuvel LW, Smeitink JA, Willems PH. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. American Journal of Physiology-Cell Physiology. 2005;289(4):C881–C90. doi: 10.1152/ajpcell.00104.2005 15901599
52. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences. 2006;103(8):2653–8.
53. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Molecular cell. 2004;16(1):59–68. doi: 10.1016/j.molcel.2004.09.026 15469822
54. Frieden M, James D, Castelbou C, Danckaert A, Martinou J-C, Demaurex N. Calcium homeostasis during mitochondria fragmentation and perinuclear clustering induced by hFis1. Journal of Biological Chemistry. 2004.
55. Fang C, Bourdette D, Banker G. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases. Molecular neurodegeneration. 2012;7(1):29.
56. Deheshi S, Dabiri B, Fan S, Tsang M, Rintoul GL. Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ROS‐mediated remodeling. Journal of neurochemistry. 2015;133(5):684–99. doi: 10.1111/jnc.13090 25761412
57. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson Å, Aspenstrom P, et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proceedings of the National Academy of Sciences. 2008;105(52):20728–33.
58. Jeyaraju DV, Cisbani G, Pellegrini L. Calcium regulation of mitochondria motility and morphology. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2009;1787(11):1363–73.
59. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5. doi: 10.1126/science.1219855 22936770
60. Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212(4):379–87. doi: 10.1083/jcb.201511036 26858267
61. Szabadkai G, Simoni A, Bianchi K, De Stefani D, Leo S, Wieckowski M, et al. Mitochondrial dynamics and Ca2+ signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2006;1763(5–6):442–9.
62. Tan AR, Cai AY, Deheshi S, Rintoul GL. Elevated intracellular calcium causes distinct mitochondrial remodelling and calcineurin-dependent fission in astrocytes. Cell calcium. 2011;49(2):108–14. doi: 10.1016/j.ceca.2010.12.002 21216007
63. Liu X, Hajnóczky G. Ca2+-dependent regulation of mitochondrial dynamics by the Miro–Milton complex. The international journal of biochemistry & cell biology. 2009;41(10):1972–6.
64. Brooks C, Wei Q, Cho S-G, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. The Journal of clinical investigation. 2009;119(5):1275–85. doi: 10.1172/JCI37829 19349686
65. Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, et al. Mitochondrial networking protects beta cells from nutrient induced apoptosis. Diabetes. 2009.
66. Hartmann B, Wai T, Hu H, MacVicar T, Musante L, Fischer-Zirnsak B, et al. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife. 2016;5:e16078. doi: 10.7554/eLife.16078 27495975
67. Coskun PE, Busciglio J. Oxidative stress and mitochondrial dysfunction in Down’s syndrome: relevance to aging and dementia. Current gerontology and geriatrics research. 2012;2012.
68. Helguera P, Seiglie J, Rodriguez J, Hanna M, Helguera G, Busciglio J. Adaptive downregulation of mitochondrial function in down syndrome. Cell metabolism. 2013;17(1):132–40. doi: 10.1016/j.cmet.2012.12.005 23312288
69. Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature. 1995;378(6559):776. doi: 10.1038/378776a0 8524410
70. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, et al. Altered metabolism of the amyloid β precursor protein is associated with mitochondrial dysfunction in Down's syndrome. Neuron. 2002;33(5):677–88. doi: 10.1016/s0896-6273(02)00604-9 11879646
71. Peng J-Y, Lin C-C, Chen Y-J, Kao L-S, Liu Y-C, Chou C-C, et al. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS computational biology. 2011;7(10):e1002212. doi: 10.1371/journal.pcbi.1002212 21998575
72. J Tronstad K, Nooteboom M, IH Nilsson L, Nikolaisen J, Sokolewicz M, Grefte S, et al. Regulation and quantification of cellular mitochondrial morphology and content. Current pharmaceutical design. 2014;20(35):5634–52. doi: 10.2174/1381612820666140305230546 24606803
73. Quirós PM, Ramsay AJ, Sala D, Fernández‐Vizarra E, Rodríguez F, Peinado JR, et al. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. The EMBO journal. 2012;31(9):2117–33. doi: 10.1038/emboj.2012.70 22433842
74. Dirnberger M, Kehl T, Neumann A. NEFI: Network extraction from images. Scientific reports. 2015;5:15669. doi: 10.1038/srep15669 26521675
75. Zamponi N, Zamponi E, Cannas SA, Billoni OV, Helguera PR, Chialvo DR. Mitochondrial network complexity emerges from fission/fusion dynamics. Scientific Reports. 2018;8. ARTN 363 doi: 10.1038/s41598-017-18351-5 WOS:000419672300008. 29321534
76. Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M. Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics. Plos Computational Biology. 2012;8(10). ARTN e1002745 doi: 10.1371/journal.pcbi.1002745 WOS:000310568800040. 23133350
77. Reis Y, Bernardo-Faura M, Richter D, Wolf T, Brors B, Hamacher-Brady A, et al. Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. PLoS One. 2012;7(1):e28694. doi: 10.1371/journal.pone.0028694 22272225
78. Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO molecular medicine. 2010;2(12):490–503. doi: 10.1002/emmm.201000102 21069748
79. Wang XL, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(49):19318–23. doi: 10.1073/pnas.0804871105 WOS:000261706600054. 19050078
80. Woo J-A, Liu T, Trotter C, Fang CC, De Narvaez E, LePochat P, et al. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nature Communications. 2017;8:15558. doi: 10.1038/ncomms15558 28585542
81. Teves JM, Bhargava V, Kirwan KR, Corenblum MJ, Justiniano R, Wondrak GT, et al. Parkinson's Disease Skin Fibroblasts Display Signature Alterations in Growth, Redox Homeostasis, Mitochondrial Function, and Autophagy. Frontiers in neuroscience. 2018;11:737. doi: 10.3389/fnins.2017.00737 29379409
82. Izzo A, Nitti M, Mollo N, Paladino S, Procaccini C, Faicchia D, et al. Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells. Human molecular genetics. 2017;26(6):1056–69. doi: 10.1093/hmg/ddx016 28087733
83. Liu X, Weaver D, Shirihai O, Hajnóczky G. Mitochondrial ‘kiss‐and‐run’: interplay between mitochondrial motility and fusion–fission dynamics. The EMBO journal. 2009;28(20):3074–89. doi: 10.1038/emboj.2009.255 19745815
84. Gillespie DT. Exact Stochastic Simulation of Coupled Chemical-Reactions. Journal of Physical Chemistry. 1977;81(25):2340–61. doi: 10.1021/j100540a008 WOS:A1977EE49800008.
85. Costa RO, Ferreiro E, Cardoso SM, Oliveira CR, Pereira CM. ER stress-mediated apoptotic pathway induced by Aβ peptide requires the presence of functional mitochondria. Journal of Alzheimer's Disease. 2010;20(2):625–36. doi: 10.3233/JAD-2010-091369 20182029
86. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137(8):2329–45.
87. Zhang M, Xi Z, Zinman L, Bruni AC, Maletta RG, Curcio SA, et al. Mutation analysis of CHCHD10 in different neurodegenerative diseases. Brain. 2015;138(9):e380–e.
88. Penttilä S, Jokela M, Bouquin H, Saukkonen AM, Toivanen J, Udd B. Late onset spinal motor neuronopathy is caused by mutation in CHCHD 10. Annals of neurology. 2015;77(1):163–72. doi: 10.1002/ana.24319 25428574
89. Auranen M, Ylikallio E, Shcherbii M, Paetau A, Kiuru-Enari S, Toppila JP, et al. CHCHD10 variant p.(Gly66Val) causes axonal Charcot-Marie-Tooth disease. Neurology Genetics. 2015;1(1):e1. doi: 10.1212/NXG.0000000000000003 27066538
90. Xu Y-F, Gendron TF, Zhang Y-J, Lin W-L, D'Alton S, Sheng H, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. Journal of Neuroscience. 2010;30(32):10851–9. doi: 10.1523/JNEUROSCI.1630-10.2010 20702714
91. Wang W, Li L, Lin W-L, Dickson DW, Petrucelli L, Zhang T, et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Human molecular genetics. 2013;22(23):4706–19. doi: 10.1093/hmg/ddt319 23827948
92. Janssens J, Van Broeckhoven C. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD–ALS spectrum disorders. Human molecular genetics. 2013;22(R1):R77–R87. doi: 10.1093/hmg/ddt349 23900071
93. Buratti E. Functional significance of TDP-43 mutations in disease. Advances in genetics. 91: Elsevier; 2015. p. 1–53. doi: 10.1016/bs.adgen.2015.07.001 26410029
94. Josephs KA, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME, Liesinger AM, et al. TAR DNA‐binding protein 43 and pathological subtype of Alzheimer's disease impact clinical features. Annals of neurology. 2015;78(5):697–709. doi: 10.1002/ana.24493 26224156
95. Wang W, Wang L, Lu J, Siedlak SL, Fujioka H, Liang J, et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nature medicine. 2016;22(8):869. doi: 10.1038/nm.4130 27348499
96. Zhang Y-J, Xu Y-F, Cook C, Gendron TF, Roettges P, Link CD, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences. 2009;106(18):7607–12.
97. Sohn Y-S, Tamir S, Song L, Michaeli D, Matouk I, Conlan AR, et al. NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences. 2013;110(36):14676–81.
98. Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nature medicine. 2012;18(10):1539. doi: 10.1038/nm.2899 22961109
99. Kusminski CM, Chen S, Ye R, Sun K, Wang QA, Spurgin SB, et al. MitoNEET-Parkin effects in pancreatic α-and β-cells, cellular survival, and intrainsular cross talk. Diabetes. 2016;65(6):1534–55. doi: 10.2337/db15-1323 26895793
100. Geldenhuys WJ, Leeper TC, Carroll RT. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug discovery today. 2014;19(10):1601–6. doi: 10.1016/j.drudis.2014.05.001 24814435
101. Vernay A, Marchetti A, Sabra A, Jauslin TN, Rosselin M, Scherer PE, et al. MitoNEET-dependent formation of intermitochondrial junctions. Proceedings of the National Academy of Sciences. 2017;114(31):8277–82.
102. Finsterer J. Mitochondriopathies. European Journal of Neurology. 2004;11(3):163–86. 15009163
103. Rainbolt TK, Lebeau J, Puchades C, Wiseman RL. Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress. Cell reports. 2016;14(9):2041–9. doi: 10.1016/j.celrep.2016.02.011 26923599
104. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204(6):919–29. doi: 10.1083/jcb.201308006 24616225
105. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell metabolism. 2014;19(4):630–41. doi: 10.1016/j.cmet.2014.03.011 24703695
106. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55. doi: 10.1083/jcb.200704110 17709429
107. Berridge MJ. Calcium signalling remodelling and disease. Portland Press Limited; 2012.
108. Berridge MJ. Calcium signalling in health and disease. Biochemical and biophysical research communications. 2017;485(1):5–. doi: 10.1016/j.bbrc.2017.01.098 28130105
109. Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends in molecular medicine. 2009;15(3):89–100. doi: 10.1016/j.molmed.2009.01.001 19230774
110. Carafoli E, Brini M. Calcium signalling and disease: molecular pathology of calcium: Springer Science & Business Media; 2007.
111. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nature reviews Molecular cell biology. 2000;1(1):11. doi: 10.1038/35036035 11413485
112. Massry SG, Fadda GZ. Chronic renal failure is a state of cellular calcium toxicity. American journal of kidney diseases. 1993;21(1):81–6. doi: 10.1016/s0272-6386(12)80727-x 8418632
113. Rivera A, Conlin PR, Williams GH, Canessa ML. Elevated lymphocyte cytosolic calcium in a subgroup of essential hypertensive subjects. Hypertension. 1996;28(2):213–8. doi: 10.1161/01.hyp.28.2.213 8707384
114. Massry S, Smogorzewski M. Role of elevated cytosolic calcium in the pathogenesis of complications in diabetes mellitus. Mineral and electrolyte metabolism. 1997;23(3–6):253–60. 9387128
115. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell calcium. 2003;34(4–5):385–97. 12909083
116. Lajdova I, Spustova V, Oksa A, Chorvatova A, Chorvat D Jr, Dzurik R. Intracellular calcium homeostasis in patients with early stagesof chronic kidney disease: effects of vitamin D3 supplementation. Nephrology Dialysis Transplantation. 2009;24(11):3376–81.
117. HEATH H III, LAMBERT PW, SERVICE FJ, ARNAUD SB. Calcium homeostasis in diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 1979;49(3):462–6.
118. Ahn C, An B-S, Jeung E-B. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Molecular and cellular endocrinology. 2015;412:302–8. doi: 10.1016/j.mce.2015.05.017 26003140
119. Kushnareva Y, Gerencser A, Bossy B, Ju W, White A, Waggoner J, et al. Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell death and differentiation. 2013;20(2):353. doi: 10.1038/cdd.2012.128 23138851
120. Ahn C, Kang J-H, Jeung E-B. Calcium homeostasis in diabetes mellitus. Journal of veterinary science. 2017;18(3):261–6. doi: 10.4142/jvs.2017.18.3.261 28927245
121. Pérez MJ, Ponce DP, Osorio-Fuentealba C, Behrens MI, Quintanilla RA. Mitochondrial bioenergetics is altered in fibroblasts from patients with sporadic Alzheimer's disease. Frontiers in neuroscience. 2017;11:553. doi: 10.3389/fnins.2017.00553 29056898
122. Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PloS one. 2010;5(2):e9367. doi: 10.1371/journal.pone.0009367 20186336
123. Santel A. Get the balance right: mitofusins roles in health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2006;1763(5–6):490–9.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania