#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

GPR40 full agonism exerts feeding suppression and weight loss through afferent vagal nerve


Autoři: Hikaru Ueno aff001;  Ryo Ito aff001;  Shin-ichi Abe aff001;  Hitomi Ogino aff001;  Minoru Maruyama aff001;  Hirohisa Miyashita aff001;  Yasufumi Miyamoto aff001;  Yusuke Moritoh aff002;  Yoshiyuki Tsujihata aff001;  Koji Takeuchi aff001;  Nobuhiro Nishigaki aff001
Působiště autorů: Cardiovascular Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan aff001;  Research and Development Division, SCOHIA PHARMA Inc., Kanagawa, Japan aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222653

Souhrn

GPR40/FFAR1 is a Gq protein-coupled receptor expressed in pancreatic β cells and enteroendocrine cells, and mediates insulin and incretin secretion to regulate feeding behavior. Several GPR40 full agonists have been reported to reduce food intake in rodents by regulating gut hormone secretion in addition to their potent glucose-lowering effects; however, detailed mechanisms of feeding suppression are still unknown. In the present study, we characterized T-3601386, a novel compound with potent full agonistic activity for GPR40, by using in vitro Ca2+ mobilization assay in Chinese hamster ovary (CHO) cells expressing FFAR1 and in vivo hormone secretion assay. We also evaluated feeding suppression and weight loss after the administration of T-3601386 and investigated the involvement of the vagal nerve in these effects. T-3601386, but not a partial agonist fasiglifam, increased intracellular Ca2+ levels in CHO cells with low FFAR1 expression, and single dosing of T-3601386 in diet-induced obese (DIO) rats elevated plasma incretin levels, suggesting full agonistic properties of T-3601386 against GPR40. Multiple doses of T-3601386, but not fasiglifam, in DIO rats showed dose-dependent weight loss accompanied by feeding suppression and durable glucagon-like peptide-1 elevation, all of which were completely abolished in Ffar1-/- mice. Immunohistochemical analysis in the nuclei of the solitary tract demonstrated that T-3601386 increased the number of c-Fos positive cells, which also disappeared in Ffar1-/- mice. Surgical vagotomy and drug-induced deafferentation counteracted the feeding suppression and weight loss induced by the administration of T-3601386. These results suggest that T-3601386 exerts incretin release and weight loss in a GPR40-dependent manner, and that afferent vagal nerves are important for the feeding suppression induced by GPR40 full agonism. Our novel findings raise the possibility that GPR40 full agonist can induce periphery-derived weight reduction, which may provide benefits such as less adverse effects in central nervous system compared to centrally-acting anti-obesity drugs.

Klíčová slova:

Biology and life sciences – Biochemistry – Research and analysis methods – Medicine and health sciences – Physiology – Physiological parameters – Endocrinology – Body weight – Diabetic endocrinology – Insulin – Pharmaceutics – Drug therapy – Hormones – Physiological processes – Biological cultures – Surgical and invasive medical procedures – Cell lines – Weight loss – Food consumption – Secretion – Drug administration – Anesthesia – Local and regional anesthesia – Nerve block – Anesthesiology – Nervous system procedures – Vagotomy – CHO cells


Zdroje

1. Muoio DM, Newgard CB. Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(3):193–205. doi: 10.1038/nrm2327 18200017

2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6. doi: 10.1038/nature05482 17167471

3. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441–9. doi: 10.2337/db11-0425 21948998

4. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. doi: 10.1172/JCI25102 15864338

5. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422(6928):173–6. doi: 10.1038/nature01478 12629551

6. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278(13):11303–11. doi: 10.1074/jbc.M211495200 12496284

7. Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab. 2005;289(4):E670–7. doi: 10.1152/ajpendo.00035.2005 15914509

8. Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD. Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun. 2005;335(1):97–104. doi: 10.1016/j.bbrc.2005.07.042 16081037

9. Negoro N, Sasaki S, Mikami S, Ito M, Suzuki M, Tsujihata Y, et al. Discovery of TAK-875: A Potent, Selective, and Orally Bioavailable GPR40 Agonist. ACS Med Chem Lett. 2010;1(6):290–4. doi: 10.1021/ml1000855 24900210

10. Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther. 2011;339(1):228–37. doi: 10.1124/jpet.111.183772 21752941

11. Ito R, Tsujihata Y, Matsuda-Nagasumi K, Mori I, Negoro N, Takeuchi K. TAK-875, a GPR40/FFAR1 agonist, in combination with metformin prevents progression of diabetes and β-cell dysfunction in Zucker diabetic fatty rats. Br J Pharmacol. 2013;170(3):568–80. doi: 10.1111/bph.12297 23848179

12. Araki T, Hirayama M, Hiroi S, Kaku K. GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab. 2012;14(3):271–8. doi: 10.1111/j.1463-1326.2011.01525.x 22051148

13. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9824):1403–11. doi: 10.1016/S0140-6736(11)61879-5 22374408

14. Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, et al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol. 2012;82(5):843–59. doi: 10.1124/mol.112.079640 22859723

15. Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One. 2012;7(10):e46300. doi: 10.1371/journal.pone.0046300 23056280

16. Pachanski MJ, Kirkland ME, Kosinski DT, Mane J, Cheewatrakoolpong B, Xue J, et al. GPR40 partial agonists and AgoPAMs: Differentiating effects on glucose and hormonal secretions in the rodent. PLoS One. 2017;12(10):e0186033. doi: 10.1371/journal.pone.0186033 29053717

17. Ho JD, Chau B, Rodgers L, Lu F, Wilbur KL, Otto KA, et al. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat Commun. 2018;9(1):1645. doi: 10.1038/s41467-017-01240-w 29695780

18. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379(6560):69–72. doi: 10.1038/379069a0 8538742

19. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005;146(12):5120–7. doi: 10.1210/en.2005-0237 16150917

20. Gorski JN, Pachanski MJ, Mane J, Plummer CW, Souza S, Thomas-Fowlkes BS, et al. GPR40 reduces food intake and body weight through GLP-1. Am J Physiol Endocrinol Metab. 2017;313(1):E37–E47. doi: 10.1152/ajpendo.00435.2016 28292762

21. Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology. 2015;148(6):1219–33. doi: 10.1053/j.gastro.2014.09.016 25241326

22. Schwartz GJ. Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1275–80. doi: 10.1098/rstb.2006.1862 16874932

23. Grill HJ, Hayes MR. The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes (Lond). 2009;33 Suppl 1:S11–5.

24. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31. doi: 10.1016/j.brainres.2005.03.011 15862798

25. Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3–36) synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146(9):3748–56. doi: 10.1210/en.2005-0473 15932924

26. Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981;213(4511):1036–7. doi: 10.1126/science.7268408 7268408

27. Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci U S A. 1997;94(19):10455–60. doi: 10.1073/pnas.94.19.10455 9294232

28. Miwatashi S, Miyamoto Y, Watanabe K, Yoshitomi Y, Hitomi Y, Aida J, et al. (2018) WO2018181847A1.

29. Portha B, Giroix M, Serradas P, Movassat J, Bailbe D and Kergoat M (2003) The neonatally streptozotocin-induced (n-STZ) diabetic rats, a family of NIDDM models, in Animal Models in Diabetes pp 231–251, CRC Press.

30. Matsuda-Nagasumi K, Takami-Esaki R, Iwachidow K, Yasuhara Y, Tanaka H, Ogi K, et al. Lack of GPR40/FFAR1 does not induce diabetes even under insulin resistance condition. Diabetes Obes Metab. 2013;15(6):538–45. doi: 10.1111/dom.12065 23331570

31. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes. 1981;30(12):1045–50. doi: 10.2337/diab.30.12.1045 7030830

32. Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, et al. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS One. 2013;8(10):e76280. doi: 10.1371/journal.pone.0076280 24130766

33. Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, et al. SCO-267, a GPR40 full agonist, improves glycemic and body weight control in rat models of diabetes and obesity. J Pharmacol Exp Ther. 2019 Jun 10. pii: jpet.118.255885. doi: 10.1124/jpet.118.255885 31182471

34. Ito R, Tsujihata Y, Suzuki M, Miyawaki K, Matsuda K, Takeuchi K. Fasiglifam/TAK-875, a Selective GPR40 Agonist, Improves Hyperglycemia in Rats Unresponsive to Sulfonylureas and Acts Additively with Sulfonylureas. J Pharmacol Exp Ther. 2016;357(1):217–27. doi: 10.1124/jpet.115.230730 26813930

35. Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123(4):1120–8. doi: 10.1053/gast.2002.35954 12360474

36. Secher A, Jelsing J, Baquero AF, Hecksher-Sørensen J, Cowley MA, Dalbøge LS, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124(10):4473–88. doi: 10.1172/JCI75276 25202980

37. Gram DX, Hansen AJ, Deacon CF, Brand CL, Ribel U, Wilken M, et al. Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker Diabetic Fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV. Eur J Pharmacol. 2005;509(2–3):211–7. doi: 10.1016/j.ejphar.2004.12.039 15733558

38. Hafizur RM, Raza SA, Chishti S, Shaukat S, Ahmed A. A ‘Humanized’ rat model of pre-diabetes by high fat diet-feeding to weaning wistar rats. Integr Obesity Diabetes. 2015;1(2):44–48.

39. Yamada Y, Kato T, Ogino H, Ashina S, Kato K. Cetilistat (ATL-962), a novel pancreatic lipase inhibitor, ameliorates body weight gain and improves lipid profiles in rats. Horm Metab Res. 2008;40(8):539–43. doi: 10.1055/s-2008-1076699 18500680

40. Nio Y, Hotta N, Maruyama M, Hamagami K, Nagi T, Funata M, et al. A Selective Bombesin Receptor Subtype 3 Agonist Promotes Weight Loss in Male Diet-Induced-Obese Rats With Circadian Rhythm Change. Endocrinology. 2017;158(5):1298–1313. doi: 10.1210/en.2016-1825 28324017

41. Paxinos G., & Watason C. (2004). The rat brain (5th ed.). San Diego, CA:Elsevier Academic Press.

42. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8(7):738–42. doi: 10.1038/nm727 12068290

43. Yamane S, Harada N, Hamasaki A, Muraoka A, Joo E, Suzuki K, et al. Effects of glucose and meal ingestion on incretin secretion in Japanese subjects with normal glucose tolerance. J Diabetes Investig. 2012;20;3(1):80–5. doi: 10.1111/j.2040-1124.2011.00143.x 24843549

44. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008;57(9):2280–7. doi: 10.2337/db08-0307 18519800

45. Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209):209ra151.

46. Chepurny OG, Bonaccorso RL, Leech CA, Wöllert T, Langford GM, Schwede F, et al. Chimeric peptide EP45 as a dual agonist at GLP-1 and NPY2R receptors. Sci Rep. 2018; 8: 3749 doi: 10.1038/s41598-018-22106-1 29491394

47. Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab. 2018;12:62–75. doi: 10.1016/j.molmet.2018.03.016 29673577

48. Iwasaki Y, Shimomura K, Kohno D, Dezaki K, Ayush EA, Nakabayashi H, et al. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity. PLoS One. 2013;8(6):e67198. doi: 10.1371/journal.pone.0067198 23840624

49. Iwasaki Y, Goswami C, Yada T. Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons. Neuropeptides. 2017;65:77–82. doi: 10.1016/j.npep.2017.05.003 28624122

50. Fujiwara K, Gotoh K, Chiba S, Masaki T, Katsuragi I, Kakuma T, et al. Intraportal administration of DPP-IV inhibitor regulates insulin secretion and food intake mediated by the hepatic vagal afferent nerve in rats. J Neurochem. 2012;121(1):66–76. doi: 10.1111/j.1471-4159.2011.07563.x 22035323


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#