In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells
Autoři:
Pascal Detampel aff001; Anutosh Ganguly aff002; Sara Tehranian aff004; Francis Green aff005; Santiswarup Singha aff002; Pere Santamaria aff002; Ayodeji A. Jeje aff004; Clifford S. Cho aff003; Björn Petri aff002; Matthias W. Amrein aff001
Působiště autorů:
Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
aff001; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
aff002; Department of Surgery, University of Michigan at Ann Arbor, Ann Arbor, Michigan, United States of America
aff003; Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
aff004; Department Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada
aff005; The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223339
Souhrn
Nanoparticles in polluted air or aerosolized drug nanoparticles predominantly settle in the alveolar lung. Here, we describe a novel, highly effective pathway for the particles to cross the alveolar epithelium and reach the lymph and bloodstream. Amorphous silica nanoparticles, suspended in perfluorocarbon, were instilled into the lungs of mice for intravital microscopy. Particles formed agglomerates that settled on the alveolar wall, half of which were removed from the lung within 30 minutes. TEM histology showed agglomerates in stages of crossing the alveolar epithelium, in large compartments inside the epithelial cells and crossing the basal membrane into the interstitium. This pathway is consistent with published kinetic studies in rats and mice, using a host of (negatively) charged and polar nanoparticles.
Klíčová slova:
Body weight – Pulmonary imaging – Epithelial cells – Epithelium – Fluorescence microscopy – Nanoparticles – Transmission electron microscopy – Alveolar macrophages
Zdroje
1. Tegen I, Heinold B, Todd M, Helmert J, Washington R, Dubovik O. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign. Atmospheric Chemistry and Physics. 2006;6: 4345–4359.
2. Gehr P, Heyder J. Particle-Lung Interactions. 1st edition. New York, NY: Marcel Dekker Incorporated; 2000.
3. Merget R, Bauer T, Küpper H, Philippou S, Bauer H, Breitstadt R, et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol. 2002;75: 625–634. doi: 10.1007/s002040100266 11876495
4. U.S. EPA. Health effects of inhaled crystalline and amorphous silica [Internet]. 11 Apr 2000 [cited 8 Jan 2018]. Available: https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=12999&CFID=46400977&CFTOKEN=68103288&jsessionid=cc30d3874075a6729c38314d51639151e4f5
5. Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica—A nanostructured material. Toxicology. 2012;294: 61–79. doi: 10.1016/j.tox.2012.02.001 22349641
6. Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, et al. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Particle and Fibre Toxicology. 2014;11: 44. doi: 10.1186/s12989-014-0044-6 25183210
7. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnology. 2010;28: 1300. doi: 10.1038/nbt.1696 21057497
8. Lehnert BE. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect. 1992;97: 17–46. doi: 10.1289/ehp.929717 1396454
9. Schürch S, Green FHY, Bachofen H. Formation and structure of surface films: captive bubble surfactometry. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease. 1998;1408: 180–202. doi: 10.1016/S0925-4439(98)00067-2
10. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect. 2005;113: 823–839. doi: 10.1289/ehp.7339 16002369
11. Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y. Analysis of Nanoparticle Agglomeration in Aqueous Suspensions via Constant-Number Monte Carlo Simulation. Environ Sci Technol. 2011;45: 9284–9292. doi: 10.1021/es202134p 21916459
12. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nature methods. 2011;8: 91–96. doi: 10.1038/nmeth.1543 21151136
13. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979;9: 62–66. doi: 10.1109/TSMC.1979.4310076
14. R: The R Project for Statistical Computing [Internet]. [cited 11 Aug 2019]. Available: https://www.r-project.org/
15. Soetaert K. plot3D: Plotting Multi-Dimensional Data [Internet]. 2017. Available: https://CRAN.R-project.org/package=plot3D
16. Weis CM, Wolfson MR, Shaffer TH. Liquid-assisted Ventilation: Physiology and Clinica Application. Annals of Medicine. 1997;29: 509–517. doi: 10.3109/07853899709007475 9562517
17. Sarkar S, Paswan A, Prakas S. Liquid ventilation. Anesth Essays Res. 2014;8: 277–282. doi: 10.4103/0259-1162.143109 25886321
18. Thiberville L, Salaün M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J. 2009;33: 974–985. doi: 10.1183/09031936.00083708 19213792
19. Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W. Differences in the biokinetics of inhaled nano- versus micron-sized particles. Acc Chem Res. 2013;46: 714–722. doi: 10.1021/ar300043r 22980029
20. Longmire M, Choyke PL, Kobayashi H. Clearance Properties of Nano-sized Particles and Molecules as Imaging Agents: Considerations and Caveats. Nanomedicine (Lond). 2008;3: 703–717. doi: 10.2217/17435889.3.5.703 18817471
21. Roursgaard M, Poulsen SS, Poulsen LK, Hammer M, Jensen KA, Utsunomiya S, et al. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol. 2010;29: 915–933. doi: 10.1177/0960327110363329 20237177
22. Park H-G, Kim JI, Kang M, Yeo M-K. The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis. Mol Cell Toxicol. 2014;10: 293–301. doi: 10.1007/s13273-014-0033-8
23. Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010;7: 2. doi: 10.1186/1743-8977-7-2 20205860
24. Johnston CJ, Finkelstein JN, Mercer P, Corson N, Gelein R, Oberdörster G. Pulmonary effects induced by ultrafine PTFE particles. Toxicol Appl Pharmacol. 2000;168: 208–215. doi: 10.1006/taap.2000.9037 11042093
25. Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, et al. Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. Langmuir. 2016;32: 10870–10880. doi: 10.1021/acs.langmuir.6b01867 27564412
26. Lehmler H-J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opinion on Drug Delivery. 2007;4: 247–262. doi: 10.1517/17425247.4.3.247 17489652
27. Kuempel ED, Wheeler MW, Smith RJ, Vallyathan V, Green FHY. Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States. Am J Respir Crit Care Med. 2009;180: 257–264. doi: 10.1164/rccm.200806-840OC 19423717
28. Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, et al. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology. 2015;9: 1013–1022. doi: 10.3109/17435390.2014.996192 25993494
29. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15: 213–220. doi: 10.1089/089426802320282338 12184871
30. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59: 478–490. doi: 10.1016/j.addr.2007.04.007 17543416
31. de Kruijf W, Ehrhardt C. Inhalation delivery of complex drugs-the next steps. Curr Opin Pharmacol. 2017;36: 52–57. doi: 10.1016/j.coph.2017.07.015 28846876
32. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2018; doi: 10.1038/nrd.2018.183 30498202
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania