Effects of inorganic nitrogen and litters of Masson Pine on soil organic carbon decomposition
Autoři:
Xin Yu aff001; Lin Chao aff001; Weidong Zhang aff001; Longchi Chen aff001; Qingpeng Yang aff001; Guangjie Zhang aff001; Silong Wang aff001
Působiště autorů:
Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
aff001; University of Chinese Academy of Sciences, Beijing, China
aff002; Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong, China
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222973
Souhrn
Soil organic matter (SOM) mineralization represents one of the largest fluxes in the global carbon cycle. Numerous studies have shown that soil organic carbon decomposition was largely changed owing to the addition of litter, however very few studies have focused on the role of plant organs in the priming effects (PEs). Here, we studied the effects of different Pinus massoniana organs (fresh leaf, leaf litter, twigs, absorptive fine roots, and transport fine roots) on C4 soil respiration by applying the 13C isotopic natural abundance method. Results showed that the effects of plant organs on PEs were significantly different at the end of 210 days incubation, which can be ascribed to contrasting organs traits especially non-structural carbohydrates and water-soluble compounds. Transport fine roots and fresh leaf induced positive PE, whereas absorptive fine roots induced negative PE. Leaf litter did not change the native SOC decomposition. Plant organ addition can change the microbial community and result in the reduction of bacteria-to-fungi ratio. Our results suggest that with regard to determining the PE of the entire ecosystem, using fresh leaf to represent leaf litter and aboveground to represent underground is implausible.
Klíčová slova:
Fungi – Bacteria – Leaves – Ecosystems – Forests – Trees – Pines – Fine roots
Zdroje
1. Kirschbaum F MU. Forest growth and species distribution in a changing climate. Tree Physiology. 2000;20(5–6):309–22. doi: 10.1093/treephys/20.5-6.309 12651447
2. Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451(7176):289–92. doi: 10.1038/nature06591 18202646.
3. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global change biology. 2015;21(5):2082–94. doi: 10.1111/gcb.12816 25421798.
4. Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, et al. Forest biogeochemistry in response to drought. Global change biology. 2016;22(7):2318–28. doi: 10.1111/gcb.13105 26403995.
5. Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry. 2010;42(9):1363–71. doi: 10.1016/j.soilbio.2010.04.003
6. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, et al. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology. 2013;101(4):943–52. doi: 10.1111/1365-2745.12092
7. McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. The New phytologist. 2015;207(3):505–18. doi: 10.1111/nph.13363 25756288.
8. Aerts R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant–soil feedbacks. Journal of Experimental Botany. 1999;50(330):29–37.
9. David A. Wardle RDB, John N. Klironomos, Heikki Setala, Wim H. van der Putten, Diana H. Wall. Ecological Linkages Between Aboveground and Belowground Biota. Science. 2004;304. doi: 10.1126/science.1095781
10. Freschet GT, Aerts R, Cornelissen JHC. A plant economics spectrum of litter decomposability. Functional Ecology. 2012;26(1):56–65. doi: 10.1111/j.1365-2435.2011.01913.x
11. Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, et al. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America. 2018. Epub 2018/09/27. doi: 10.1073/pnas.1716595115 30254167.
12. Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry. 2000;32(11–12):1485–98. http://dx.doi.org/10.1016/S0038-0717(00)00084-5.
13. Di Lonardo DP, Manrubia M, De Boer W, Zweers H, Veen GF, Van der Wal A. Relationship between home-field advantage of litter decomposition and priming of soil organic matter. Soil biology & biochemistry. 2018;126:49–56. doi: 10.1016/j.soilbio.2018.07.025 PubMed PMID: WOS:000447580800006.
14. Zhang WD, Wang SL. Effects of NH4+ and NO3- on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China. Soil biology & biochemistry. 2012;47:116–22. doi: 10.1016/j.soilbio.2011.12.004 PubMed PMID: WOS:000301562600015.
15. Zhang XW, Han XZ, Yu WT, Wang P, Cheng WX. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years. PloS one. 2017;12(9). doi: 10.1371/journal.pone.0184978 WOS:000411339900070. 28934287
16. Wang H, Boutton TW, Xu WH, Hu GQ, Jiang P, Bai E. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports. 2015;5. doi: 10.1038/srep10102 WOS:000354273600004. 25960162
17. Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? Soil biology & biochemistry. 2003;35(6):837–43. doi: 10.1016/s0038-0717(03)00123-8 PubMed PMID: WOS:000183610500010.
18. Berg B, Mcclaugherty C. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration2013.
19. GUL Shamim, WHALEN, Joann K, ELLIS, Brian E, et al. Plant residue chemistry impacts soil processes and microbial community structure: A study with Arabidopsis thaliana cell wall mutants. Applied Soil Ecology. 2012;60(4):84–91.
20. Meidute S, Demoling F, Bååth E. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil biology & biochemistry. 2008;40(9):2334–43.
21. Rinkes ZL, DeForest JL, Grandy AS, Moorhead DL, Weintraub MN. Interactions between leaf litter quality, particle size, and microbial community during the earliest stage of decay. Biogeochemistry. 2014;117(1):153–68. doi: 10.1007/s10533-013-9872-y PubMed PMID: WOS:000329606200012.
22. Yao H, Thornton B, Paterson E. Incorporation of 13 C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil biology & biochemistry. 2012;53(1):72–7.
23. Fan P, Guo D. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia. 2010;163(2):509–15. doi: 10.1007/s00442-009-1541-4 20058026.
24. Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, et al. Enhanced nitrogen deposition over China. Nature. 2013;494(7438):459–62. doi: 10.1038/nature11917 23426264.
25. Lingli L, Greaver TL. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters. 2010;13(7):819–28. doi: 10.1111/j.1461-0248.2010.01482.x 20482580
26. Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry. 2014;121(2):305–16.
27. Varma V, Catherin AM, Sankaran M. Effects of increased N and P availability on biomass allocation and root carbohydrate reserves differ between N-fixing and non-N-fixing savanna tree seedlings. Ecology and Evolution. 2018;8(16):8467–76. doi: 10.1002/ece3.4289 WOS:000444946300058. 30250716
28. Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience. 2008;1(11):767–70.
29. Liu W, Qiao C, Yang S, Bai W, Liu L. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma. 2018;332:37–44. doi: 10.1016/j.geoderma.2018.07.008 PubMed PMID: WOS:000441487000005.
30. Di Lonardo DP, De Boer W, Klein Gunnewiek PJA, Hannula SE, Van der Wal A. Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content. Soil Biology and Biochemistry. 2017;108:41–54. doi: 10.1016/j.soilbio.2017.01.017
31. Aye NS, Butterly CR, Sale PWG, Tang C. Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology and Biochemistry. 2018;123:33–44. doi: 10.1016/j.soilbio.2018.04.027
32. Qiao N, Xu XL, Hu YH, Blagodatskaya E, Liu YW, Schaefer D, et al. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Scientific Reports. 2016;6. doi: 10.1038/s41598-016-0015-2 WOS:000391996100001.
33. Zeng L, He W, Teng M, Luo X, Yan Z, Huang Z, et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China. Sci Total Environ. 2018;639:679–86. doi: 10.1016/j.scitotenv.2018.05.208 29803039.
34. Tao D, Li Y, Lu D, Luo Y, Yu S, Ye S. The essential oil components of Cinnamomum cassia: an analysis under different thinning models of plantation Pinus massoniana. Journal of Forestry Research. 2015;27(3):707–17. doi: 10.1007/s11676-015-0192-z
35. Huixia Y, Silong W, Bing F, Weidong Z. Dynamics of annual litter mass and nutrient return of different age Masson pine plantations. Chinese Journal of Ecology. 2010;29(12):2334–40.
36. Soest PJV. Use of detergents in the analysis of fibrous feeds IV. Determination of plant cell-wall constituents. J Associ Official Anal Chem. 1967;50.
37. Buysse J, Merckx R. An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany. 1993;44(267):1627–9.
38. Wang Q, Wang S, He T, Liu L, Wu J. Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil biology & biochemistry. 2014;71:13–20. doi: 10.1016/j.soilbio.2014.01.004 PubMed PMID: WOS:000333508400002.
39. Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 2008;11(10):1065–71. Epub 2008/07/17. doi: 10.1111/j.1461-0248.2008.01219.x 18627410.
40. Berg B. Decomposition patterns for foliar litter–A theory for influencing factors. Soil Biology and Biochemistry. 2014;78:222–32. doi: 10.1016/j.soilbio.2014.08.005
41. Thimo K, Klaus K, Georg G, Christiane G, Karsten K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology. 2011;92(5):1052–62. doi: 10.1890/10-1307.1 21661566
42. Berg B, Johansson M- B, Liu C, Faituri M, Sanborn P, Vesterdal L, et al. Calcium in decomposing foliar litter–A synthesis for boreal and temperate coniferous forests. Forest Ecology and Management. 2017;403:137–44. doi: 10.1016/j.foreco.2017.08.022
43. Blagodatskaya Е, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils. 2008;45(2):115–31. doi: 10.1007/s00374-008-0334-y
44. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450(7167):277–80. doi: 10.1038/nature06275 17994095.
45. Wu J, Zhang Q, Yang F, lei Y, Zhang Q, Cheng X. Does short-term litter input manipulation affect soil respiration and its carbon-isotopic signature in a coniferous forest ecosystem of central China? Applied Soil Ecology. 2017;113:45–53. doi: 10.1016/j.apsoil.2017.01.013
46. Zhang W, Chao L, Yang Q, Wang Q, Fang Y, Wang S. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology. 2016. doi: 10.1002/ecy.1515 27859104
47. Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology. 2007;37(1):95–105.
48. Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biology and Fertility of Soils. 2014;50(8):1189–200. doi: 10.1007/s00374-014-0968-x PubMed PMID: WOS:000344168400003.
49. Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry. 2011;43(1):86–96. doi: 10.1016/j.soilbio.2010.09.017
50. Kou X, Su T, Ma N, Li Q, Wang P, Wu Z, et al. Soil micro-food web interactions and rhizosphere priming effect. Plant and Soil. 2018;432(1–2):129–42. doi: 10.1007/s11104-018-3782-7 PubMed PMID: WOS:000447871600009.
51. Hicks LC, Meir P, Nottingham AT, Reay DS, Stott AW, Salinas N, et al. Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil biology & biochemistry. 2019;129:212–22. doi: 10.1016/j.soilbio.2018.10.015 PubMed PMID: WOS:000457661000022.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania