Intraoperative measurement of intraventricular pressure in dogs with communicating internal hydrocephalus
Autoři:
Malgorzata Kolecka aff001; Daniela Farke aff001; Klaus Failling aff002; Martin Kramer aff001; Martin J. Schmidt aff001
Působiště autorů:
Department of Veterinary Clinical Sciences, Small Animal Clinic – Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
aff001; Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig-University-Giessen, Giessen, Germany
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222725
Souhrn
Collapse of the lateral cerebral ventricles after ventriculo-peritoneal drainage is a fatal complication in dogs with internal hydrocephalus. It occurs due to excessive outflow of cerebrospinal fluid into the peritoneal cavity (overshunting). In most shunt systems, one-way valves with different pressure settings regulate flow into the distal catheter to avoid overshunting. The rationale for the choice of an appropriate opening pressure is a setting at the upper limit of normal intracranial pressure in dogs. However, physiological intraventricular pressure in normal dogs vary between 5 and 12 mm Hg. Furthermore, we hypothesise that intraventricular pressure in hydrocephalic dogs might differ from pressure in normal dogs and we also consider that normotensive hydrocephalus exists in dogs, as in humans. In order to evaluate intraventricular pressure in hydrocephalic dogs, twenty-three client owned dogs with newly diagnosed communicating internal hydrocephalus were examined before implantation of a ventriculo-peritoneal shunt using a single use piezo-resistive strain-gauge sensor (MicroSensor ICP probe). Ventricular volume and brain volume were measured before surgery, based on magnetic resonance images. Total ventricular volume was calculated and expressed in relation to the total volume of the brain, including the cerebrum, cerebellum, and brainstem (ventricle-brain index). Multiple logistic regression analysis was performed to assess the influence of the covariates “age”, “gender”, “duration of clinical signs”, “body weight”, and “ventricle-brain index” on intraventricular pressure. The mean cerebrospinal fluid pressure in the hydrocephalic dogs was 8.8 mm Hg (standard deviation 4.22), ranging from 3–18 mm Hg. The covariates “age”, (P = 0.782), “gender” (P = 0.162), “body weight”, (P = 0.065), or ventricle-brain index (P = 0.27)” were not correlated with intraventricular pressure. The duration of clinical signs before surgery, however, was correlated with intraventricular pressure (P< 0.0001). Dogs with internal hydrocephalus do not necessarily have increased intraventricular pressure. Normotensive communicating hydrocephalus exists in dogs.
Klíčová slova:
Dogs – Magnetic resonance imaging – Blood pressure – Catheters – Cardiac ventricles – Hydrocephalus – Cerebrospinal fluid – Hydrostatic pressure
Zdroje
1. Selby LA, Hayes HM, Becker SV. Epizootiologic features of canine hydrocephalus. Am J Vet Res. 1979;40:411–413. 475097
2. Thomas WB. Hydrocephalus in dogs and cats. Vet Clin North Am Small Anim Pract. 2010;40:143–159. doi: 10.1016/j.cvsm.2009.09.008 19942061
3. Harrington ML, Bagley RS, Moore MP. Hydrocephalus. Vet Clin North Am Small Anim Pract. 1996;26:843–856. doi: 10.1016/s0195-5616(96)50108-7 8813753
4. Wünschmann A, Oglesbee M. Periventricular changes associated with spontaneous canine hydrocephalus. Vet Pathol. 2001;38:67–73. doi: 10.1354/vp.38-1-67 11199166
5. Vite CH. Development disorders. In: Braund’s Clinical Neurology in Small Animals: Localization, Diagnosis and Treatment. International Veterinary Information Service, Ithaca, NY; 2006. pp. 7–9.
6. Deo-Narine V, Gomez DG, Vullo T, Manzo RP, Zimmerman RD, Deck MD, et al. Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging. Invest Radiol. 1994;29:287–293. doi: 10.1097/00004424-199403000-00006 8175302
7. Mc Gavin MD, Zachary JF. Pathologic Basis of Veterinary Disease. 4th ed. 2007, Mosby St Louis, pp 873–875.
8. Shihab N, Davies E, Kenny PJ, Loderstedt S, Volk HA. Treatment of hydrocephalus with ventriculoperitoneal shunting in twelve dogs. Vet Surg. 2011;40:477–484. doi: 10.1111/j.1532-950X.2011.00832.x 21521242
9. Coates JR, Axlund TW, Dewey CW, Smith J. Hydrocephalus in dogs and cats. Comp Cont Edu Pract Vet. 2006;28:136–146.
10. Kolecka M, Ondreka N, Moritz A, Kramer M, Schmidt MJ. Effect of acetazolamide and subsequent ventriculo-peritoneal shunting on clinical signs and ventricular volumes in dogs with internal hydrocephalus. Acta Vet Scand. 2015; 57:49. doi: 10.1186/s13028-015-0137-8 26337283
11. Biel M, Kramer M, Forterre F, Jurina K, Lautersack O, Failing K, et al. Outcome of ventriculoperitoneal shunt implantation for treatment of congenital internal hydrocephalus in dogs and cats: 36 cases (2001–2009). J Am Vet Med Assoc. 2013;242:948–958. doi: 10.2460/javma.242.7.948 23517207
12. Gradner G, Kaefinger R, Dupré G. Complications associated with ventriculoperitoneal shunts in dogs and cats with idiopathic hydrocephalus: A systematic review. J Vet Intern Med. 2019;12:1–10.
13. de Stefani A, de Risio L, Platt SR, Matiasek L, Lujan-Feliu-Pascual A, Garosi LS. Surgical technique, postoperative complications and outcome in 14 dogs treated for hydrocephalus by ventriculoperitoneal shunting. Vet Surg. 2011;40:183–191. doi: 10.1111/j.1532-950X.2010.00764.x 21244441
14. Browd SR, Ragel BT, Gottfried ON, Kestle JRW. Failure of cerebrospinal fluid shunts. Part 1. Obstruction and mechanical failure. Pediatr Neurol. 2006;34:83–92. doi: 10.1016/j.pediatrneurol.2005.05.020 16458818
15. Browd SR, Gottfried ON, Ragel BT, Kestle JRW. Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications. Pediatr Neurol. 2006;34:171–176. doi: 10.1016/j.pediatrneurol.2005.05.021 16504785
16. Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal Fluid Shunting Complications in Children. Pediatr Neurosurg. 2017;52:381–400. doi: 10.1159/000452840 28249297
17. Oi S, Matsumoto S. Morphological findings of postshunt slit-ventricle in experimental canine hydrocephalus. Aspects of causative factors of isolated ventricles and slit-ventricle syndrome. Childs Nerv Syst. 1986;2:179–84. doi: 10.1007/bf00706807 3779679
18. Schmidt MJ, Hartmann A, Farke D, Failling K, Kolecka M. Association between improvement of clinical signs and decrease of ventricular volume after ventriculoperitoneal shunting in dogs with internal hydrocephalus. J Vet Intern Med. 2019 Apr 8. Epub ahead of print.
19. Kitagawa M, Sakai T, Kanayama K. Subdural accumulation of fluid in a dog after the insertion of a ventriculoperitoneal shunt. Vet Rec. 2005;156:206–208. doi: 10.1136/vr.156.7.206 15747657
20. Elder BD, Goodwin CR, Kosztowski TA, Rigamonti D. Hydrocephalus shunt procedures. In: Adult Hydrocephalus. Cambridge University Press, UK; 2014. pp.175–178.
21. Takahashi Y. Withdrawal of shunt systems–clinical use of the programmable shunt system and its effect on hydrocephalus in children. Childs Nerv Syst. 2001;17:472–477. doi: 10.1007/s003810000424 11508536
22. Laubner S, Ondreka N, Failing K, Kramer M, Schmidt MJ. Magnetic resonance imaging signs of high intraventricular pressure– comparison of findings in dogs with clinically relevant internal hydrocephalus and asymptomatic dogs with ventriculomegaly. BMC Vet Res. 2015;11:181. doi: 10.1186/s12917-015-0479-5 26231840
23. Schmidt MJ, Laubner S, Kolecka M, Failing K, Moritz A, Kramer M, et al. Comparison of the relationship between cerebral white matter and grey matter in normal dogs and dogs with lateral ventricular enlargement. PLoS One. 2015;10:e0124174. doi: 10.1371/journal.pone.0124174 25938575
24. Eymann R, Steudel WI, Kiefer M: Pediatric gravitational shunts: initial results from a prospective study. J Neurosurg. 2007;106:179–184. doi: 10.3171/ped.2007.106.3.179 17465381
25. Cedzich C, Wiessner A: The treatment of hydrocephalus in infants and children using hydrostatic valves. Zentralbl Neurochir. 2003;64:51–57. doi: 10.1055/s-2003-40372 12838472
26. Meling TR, Egge A, Due-Tonnessen B: The gravity-assisted Paedi-Gav valve in the treatment of pediatric hydrocephalus. Pediatr Neurosurg. 2005;41:8–14. doi: 10.1159/000084859 15886507
27. Bagley RS, Keegan RD, Greene SA, et al. Pathologic effects in brain after intracranial pressure monitoring in clinically normal dogs, using a fiberoptic monitoring system. Am J Vet Res. 1995;56:1475–1478. 8585659
28. Sturges BK, Dickinson PJ, Tripp LD, Udaltsova I, LeCouteur RA. Intracranial pressure monitoring in normal dogs using subdural and intraparenchymal miniature strain-gauge transducers. J Vet Intern Med. 2018. [Epub ahead of print]
29. Shores A, Jevens D, decamp CE. Intraoperative brain pressure monitoring in the dog. In: Proceedings ACVIM; 1991. pp. 831–833.
30. Simpson ST, Reed RB. Manometric values for normal cerebrospinal fluid pressure in dogs. J Am Anim Hosp Assoc. 1987;23:629‐632.
31. Novak G, Digel C, Burns B, James AE. Cerebrospinal fluid pressure measurements and radioisotope cisternography in dogs. Lab Anim. 1974;8:85‐ 91. doi: 10.1258/002367774780943779 4810791
32. Scrivani PV, Freer SR, Dewey CW, Cerda-Gonzalez S. Cerebrospinal fluid signal void sign in dogs. Vet Radiol Ultrasound. 2009;50:269–275. 19507389
33. Chadduck WM, Chadduck JB, Boop FA. The subarachnoid spaces in craniosynostosis. Neurosurgery. 1992;30:867–871. doi: 10.1227/00006123-199206000-00008 1614588
34. Schmidt MJ, Amort KH, Failing K, Klingler M, Kramer M, Ondreka N. Comparison of the endocranial- and brain volumes in brachycephalic dogs, mesaticephalic dogs and Cavalier King Charles spaniels in relation to their body weight. Acta Vet Scand. 2014;13:30.
35. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg N. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992;34:370–80. doi: 10.1007/bf00596493 1407513
36. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F, et al. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience. 2017;23;354:69–87. doi: 10.1016/j.neuroscience.2017.04.025 28456718
37. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002;36:281–303. doi: 10.1159/000063533 12077474
38. Di Rocco C, Di Trapani G, Pettorossi V, Caldarelli M. On the Pathology of Experimental Hydrocephalus Induced by Artificial Increase in Endoventricular CSF Pulse Pressure. Pediatr. Neurosurg. 1979;5:81–95.
39. Bering EA. Circulation of the cerebrospinal fluid. Demonstration of the choroid plexus as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg. 1962;19:405–413. doi: 10.3171/jns.1962.19.5.0405 13867840
40. Penn RD, Lee MC, Linninger AA, Miesel K, Lu SN, Stylos L. Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg. 2005;102:1069–1075. doi: 10.3171/jns.2005.102.6.1069 16028766
41. Levine DN. Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol. Sci. 2008;269:1–11. doi: 10.1016/j.jns.2007.12.022 18234229
42. Waugshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg. 2006;104:810–819. doi: 10.3171/jns.2006.104.5.810 16703889
43. Kim H, Min BK, Park DH, Hawi S, Kim BJ, Czosnyka Z, et al. Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension. J Neurosurg. 2015;122:1330–1340. doi: 10.3171/2014.12.JNS14516 25658783
44. McCormick JM, Yamada K, Rekate HL, Miyake H. Time course of intraventricular pressure change in a canine model of hydrocephalus: its relationship to sagittal sinus elastance. Pediatr. Neurosurg. 1992;18:127–133. doi: 10.1159/000120650 1457371
45. Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modelling considerations of cerebrospinal fluid. Neurosurg. Focus. 2016;41(3):E8. doi: 10.3171/2016.7.FOCUS16191 27581320
46. Skjolding AD, Rowland IJ, Søgaard LV, Praetorius J, Penkowa M, Juhler M. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res. 2010;7:20. doi: 10.1186/1743-8454-7-20 21054845
47. Akins PT, Guppy KH, Axelrod YV, Chakrabarti I, Silverthorn J, Williams AR. The genesis of low pressure hydrocephalus. Neurocrit. Care. 2011;15:461–468. doi: 10.1007/s12028-011-9543-6 21523524
48. Pang D, Altschuler E. Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery. 1994;35:643–656. doi: 10.1227/00006123-199410000-00010 7808607
49. Harary M, Dolmans RGF, Gormley WB. Intracranial Pressure Monitoring- Review and Avenues for Development. Sensors (Basel). 2018;5:18.
50. Ragland J, Lee K. Brain edema and intracranial hypertension. J Neurocrit. Care. 2016;9:105–112.
51. Mendelow AD, Rowan JO, Murray L, Kerr AE. A clinical comparison of subdural screw pressure measurements with ventricular pressure. J Neurosurg. 1983;58:45–50. doi: 10.3171/jns.1983.58.1.0045 6847908
52. Sundbärg G, Nordström CH, Messeter K. A comparison of intraparenchymatous and intraventricular pressure recording in clinical practice. J Neurosurg. 1987;67:841–845. doi: 10.3171/jns.1987.67.6.0841 3681423
53. Vender J, Waller J, Dhandapani K, McDonnell D. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury. J Clin. Monit. Comput. 2011;25:231–236. doi: 10.1007/s10877-011-9300-6 21938526
54. Crutchfield JS, Narayan RK, Robertson CS, Michael LH. Evaluation of a fiberoptic intracranial pressure monitor. J Neurosurg. 1990;72:482–487. doi: 10.3171/jns.1990.72.3.0482 2303881
55. Leonard JL, Redding RW. Effects of hypertonic solutions on cerebrospinal fluid pressure in the lateral ventricle of the dog. Am. J Vet Res. 1973;34:213‐ 219. 4685545
56. Packer RA, Simmons JP, Davis NM, Constable PD. Evaluation of an acute focal epidural mass model to characterize the intracranial pressure-volume relationship in healthy Beagles. Am. J Vet Res. 2011;72:103–108. doi: 10.2460/ajvr.72.1.103 21194342
57. Simpson ST, Reed RB: Manometric values for normal cerebrospinal fluid pressure in dogs. JAAHA. 1987;23:629–632.
58. Goren S, Kahveci N, Alkan T, Goren B, Korfali E. The effects of sevoflurane and isoflurane on intracranial pressure and cerebral perfusion pressure after diffuse brain injury in rats. J Neurosurg. Anesthesiol. 2001;13:113–9. 11294452
59. Scheller MS, Nakakimura K, Fleischer JE, Zornow MH. Cerebral effects of sevoflurane in the dog: Comparison with isoflurane and enflurane. Br. J Anaesth. 1990;65:88–92.
60. Shores A: Neuroanesthesia: A review of the effects of anesthetic agents on cerebral blood flow and intracranial pressure in the dog. Vet Surg. 1985;14:257–263.
61. Chapman PH, Cosman ER, Arnold MA. The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery. 1990;26(2):181–189. doi: 10.1097/00006123-199002000-00001 2308665
62. Rigamonti D. Hydrocephalus. Operative neurosurgical techniques. Sixth ed. Elsevier; 2012:1127–1142.
63. Conzemius MG, Sammarco JL, Holt DE, Smith GK. Clinical determination of preoperative and postoperative intra-abdominal pressures in dogs. Vet Surg. 1995;24:195–201. 7653032
64. Drellich S. Intra-abdominal pressure and abdominal compartment syndrome. Compend. Cont. Educ. Prac. Vet. 2000;22:764–769.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania