Oxidoreductase disulfide bond proteins DsbA and DsbB form an active redox pair in Chlamydia trachomatis, a bacterium with disulfide dependent infection and development
Autoři:
Signe Christensen aff001; Maria A. Halili aff002; Natalie Strange aff003; Guillaume A. Petit aff002; Wilhelmina M. Huston aff003; Jennifer L. Martin aff002; Róisín M. McMahon aff002
Působiště autorů:
Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
aff001; Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
aff002; School of Life Sciences, University of Technology Sydney, Broadway, New South Wales, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222595
Souhrn
Chlamydia trachomatis is an obligate intracellular bacterium with a distinctive biphasic developmental cycle that alternates between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body (RB). Members of the genus Chlamydia are dependent on the formation and degradation of protein disulfide bonds. Moreover, disulfide cross-linking of EB envelope proteins is critical for the infection phase of the developmental cycle. We have identified in C. trachomatis a homologue of the Disulfide Bond forming membrane protein Escherichia coli (E. coli) DsbB (hereafter named CtDsbB) and—using recombinant purified proteins—demonstrated that it is the redox partner of the previously characterised periplasmic oxidase C. trachomatis Disulfide Bond protein A (CtDsbA). CtDsbA protein was detected in C. trachomatis inclusion vacuoles at 20 h post infection, with more detected at 32 and similar levels at 44 h post infection as the developmental cycle proceeds. As a redox pair, CtDsbA and CtDsbB largely resemble their homologous counterparts in E. coli; CtDsbA is directly oxidised by CtDsbB, in a reaction in which both periplasmic cysteine pairs of CtDsbB are required for complete activity. In our hands, this reaction is slow relative to that observed for E. coli equivalents, although this may reflect a non-native expression system and use of a surrogate quinone cofactor. CtDsbA has a second non-catalytic disulfide bond, which has a small stabilising effect on the protein’s thermal stability, but which does not appear to influence the interaction of CtDsbA with its partner protein CtDsbB. Expression of CtDsbA during the RB replicative phase and during RB to EB differentiation coincided with the oxidation of the chlamydial outer membrane complex (COMC). Together with our demonstration of an active redox pairing, our findings suggest a potential role for CtDsbA and CtDsbB in the critical disulfide bond formation step in the highly regulated development cycle.
Klíčová slova:
Biology and life sciences – Cell biology – Biochemistry – Organisms – Physical sciences – Chemistry – Chemical reactions – Proteins – Medicine and health sciences – Chemical compounds – Cellular structures and organelles – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Bacteria – Pathology and laboratory medicine – Pathogens – Amino acids – Sulfur containing amino acids – Cysteine – Organic compounds – Organic chemistry – Infectious diseases – Cell membranes – Membrane proteins – Outer membrane proteins – Sexually transmitted diseases – Electrochemistry – Chlamydia – Chlamydia trachomatis – Chlamydia infection – Post-translational modification – Oxidation-reduction reactions – Disulfide bonds – Oxidation
Zdroje
1. Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nature microbiology. 2018;3(3):270–80. doi: 10.1038/s41564-017-0106-2 29A73BA9-DDA3-4CAA-8E41-3F60A7D77591. 29463925
2. Jacob-Dubuisson F, Pinkner J, Xu Z, Striker R, Padmanhaban A, Hultgren SJ. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(24):11552–6. doi: 10.1073/pnas.91.24.11552 7972100; PubMed Central PMCID: PMC45269.
3. Braun P, Ockhuijsen C, Eppens E, Koster M, Bitter W, Tommassen J. Maturation of Pseudomonas aeruginosa elastase. Formation of the disulfide bonds. 2001;276(28):26030–5. doi: 10.1074/jbc.M007122200 11350952
4. Foreman DT, Martinez Y, Coombs G, Torres A, Kupersztoch YM. TolC and DsbA are needed for the secretion of STB, a heat-stable enterotoxin of Escherichia coli. Mol Microbiol. 1995;18(2):237–45. doi: 10.1111/j.1365-2958.1995.mmi_18020237.x 8709843.
5. Hiniker A, Bardwell JC. In vivo substrate specificity of periplasmic disulfide oxidoreductases. The Journal of Biological Chemistry. 2004;279(13):12967–73. doi: 10.1074/jbc.M311391200 14726535.
6. Miki T, Okada N, Kim Y, Abe A, Danbara H. DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus. Microb Pathog. 2008;44(2):151–8. doi: 10.1016/j.micpath.2007.09.001 17933489.
7. Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. DSB proteins and bacterial pathogenicity. Nature reviews Microbiology. 2009;7(3):215–25. doi: 10.1038/nrmicro2087 19198617.
8. Abe M, Nakazawa T. The dsbB gene product is required for protease production by Burkholderia cepacia. Infection and immunity. 1996;64(10):4378–80. 8926116; PubMed Central PMCID: PMC174384.
9. Urban A, Leipelt M, Eggert T, Jaeger KE. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. Journal of Bacteriology. 2001;183(2):587–96. doi: 10.1128/JB.183.2.587-596.2001 11133952; PubMed Central PMCID: PMC94914.
10. Zhang HZ, Donnenberg MS. DsbA is required for stability of the type IV pilin of enteropathogenic escherichia coli. Molecular microbiology. 1996;21(4):787–97. doi: 10.1046/j.1365-2958.1996.431403.x 8878041.
11. Yu J, Webb H, Hirst TR. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Molecular microbiology. 1992;6(14):1949–58. doi: 10.1111/j.1365-2958.1992.tb01368.x 1324389.
12. Ireland PM, McMahon RM, Marshall LE, Halili M, Furlong E, Tay S, et al. Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxidants & redox signaling. 2014;20(4):606–17. doi: 10.1089/ars.2013.5375 23901809; PubMed Central PMCID: PMC3901323.
13. McMahon RM, Ireland PM, Sarovich DS, Petit G, Jenkins CH, Sarkar-Tyson M, et al. Virulence of the melioidosis pathogenBurkholderia pseudomalleirequires the oxidoreductase membrane protein DsbB. Infection and immunity. 2018:IAI.00938-17. doi: 10.1128/IAI.00938-17 29440370.
14. Totsika M, Heras B, Wurpel DJ, Schembri MA. Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. Journal of Bacteriology. 2009;191(12):3901–8. doi: 10.1128/JB.00143-09 19376849; PubMed Central PMCID: PMC2698384.
15. Hackstadt T, Todd WJ, Caldwell HD. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? Journal of Bacteriology. 1985;161(1):25–31. 2857160; PubMed Central PMCID: PMC214830.
16. Stirling P, Allan I, Pearce JH. Interference with transformation of chlamydiae from reproductive to infective body forms by deprivation of cysteine. FEMS microbiology letters. 1983;19(1):133–6. doi: 10.1111/j.1574-6968.1983.tb00526.x
17. Hatch TP, Allan I, Pearce JH. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. Journal of Bacteriology. 1984;157(1):13–20. 6690419; PubMed Central PMCID: PMC215122.
18. Sardinia LM, Segal E, Ganem D. Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. Journal of general microbiology. 1988;134(4):997–1004. doi: 10.1099/00221287-134-4-997 3183625.
19. Raulston JE, Davis CH, Paul TR, Hobbs JD, Wyrick PB. Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds. Infection and immunity. 2002;70(2):535–43. doi: 10.1128/IAI.70.2.535-543.2002 11796580; PubMed Central PMCID: PMC127684.
20. Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Critical reviews in microbiology. 2019;44:1–18. doi: 10.1080/1040841X.2018.1538933 30663449.
21. Bavoil P, Ohlin A, Schachter J. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infection and immunity. 1984;44(2):479–85. 6715046; PubMed Central PMCID: PMC263545.
22. Hatch TP, Miceli M, Sublett JE. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. Journal of Bacteriology. 1986;165(2):379–85. doi: 10.1128/jb.165.2.379-385.1986 3944054; PubMed Central PMCID: PMC214428.
23. Betts-Hampikian HJ, Fields KA. Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development. Journal of Bacteriology. 2011;193(24):6950–9. doi: 10.1128/JB.05163-11 22001510; PubMed Central PMCID: PMC3232835.
24. Bardwell JC, McGovern K, Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991;67(3):581–9. doi: 10.1016/0092-8674(91)90532-4 1934062.
25. Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(22):11857–62. doi: 10.1073/pnas.94.22.11857 9342327; PubMed Central PMCID: PMC23636.
26. Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC. Oxidative protein folding is driven by the electron transport system. Cell. 1999;98(2):217–27. doi: 10.1016/s0092-8674(00)81016-8 10428033.
27. Bader MW, Xie T, Yu CA, Bardwell JC. Disulfide bonds are generated by quinone reduction. The Journal of Biological Chemistry. 2000;275(34):26082–8. doi: 10.1074/jbc.M003850200 10854438.
28. Martin JL, Bardwell JC, Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993;365(6445):464–8. doi: 10.1038/365464a0 8413591.
29. Chivers PT, Prehoda KE, Raines RT. The CXXC motif: a rheostat in the active site. Biochemistry. 1997;36(14):4061–6. doi: 10.1021/bi9628580 9099998
30. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxidants & redox signaling. 2011;14(9):1729–60. doi: 10.1089/ars.2010.3344 21241169.
31. McMahon RM, Premkumar L, Martin JL. Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. Biochimica et biophysica acta. 2014;1844(8):1391–401. doi: 10.1016/j.bbapap.2014.01.013 24487020.
32. Arts IS, Ball G, Leverrier P, Garvis S, Nicolaes V, Vertommen D, et al. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio. 2013;4(6):e00912–13. doi: 10.1128/mBio.00912-13 24327342; PubMed Central PMCID: PMC3870256.
33. Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P, et al. Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxidants & redox signaling. 2009;11(7):1485–500. doi: 10.1089/ARS.2008.2420 19265485.
34. Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, et al. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Acta crystallographica Section D, Biological crystallography. 2013;69(Pt 10):1981–94. doi: 10.1107/S0907444913017800 24100317; PubMed Central PMCID: PMC3792642.
35. Chim N, Harmston CA, Guzman DJ, Goulding CW. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. BMC Struct Biol. 2013;13:23. doi: 10.1186/1472-6807-13-23 24134223; PubMed Central PMCID: PMC3853704.
36. Christensen S, Groftehauge MK, Byriel K, Huston WM, Furlong E, Heras B, et al. Structural and Biochemical Characterization of Chlamydia trachomatis DsbA Reveals a Cysteine-Rich and Weakly Oxidising Oxidoreductase. PLoS One. 2016;11(12):e0168485. doi: 10.1371/journal.pone.0168485 28030602; PubMed Central PMCID: PMC5193440.
37. Huston WM, Theodoropoulos C, Mathews SA, Timms P. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol. 2008;8:190. doi: 10.1186/1471-2180-8-190 18986550; PubMed Central PMCID: PMC2585093.
38. Newhall WJt. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infection and immunity. 1987;55(1):162–8. 3793227; PubMed Central PMCID: PMC260295.
39. Wang X, Schwarzer C, Hybiske K, Machen TE, Stephens RS. Developmental stage oxidoreductive states of Chlamydia and infected host cells. mBio. 2014;5(6):e01924. doi: 10.1128/mBio.01924-14 25352618; PubMed Central PMCID: PMC4217174.
40. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, et al. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell. 2006;127(4):789–801. doi: 10.1016/j.cell.2006.10.034 17110337
41. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, et al. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Molecular cell. 2008;31(6):896–908. doi: 10.1016/j.molcel.2008.08.028 18922471; PubMed Central PMCID: PMC2622435.
42. Stamm M, Staritzbichler R, Khafizov K, Forrest LR. Alignment of Helical Membrane Protein Sequences Using AlignMe. PloS one. 2013;8(3):e57731. doi: 10.1371/journal.pone.0057731 23469223; PubMed Central PMCID: PMC3587630.
43. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic acids research. 2014;42(Web Server issue):W320–4. doi: 10.1093/nar/gku316 24753421
44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 11152613.
45. Jander G, Martin NL, Beckwith J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. The EMBO journal. 1994;13(21):5121–7. 7957076; PubMed Central PMCID: PMC395459.
46. Inaba K, Ito K. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. The EMBO journal. 2002;21(11):2646–54. doi: 10.1093/emboj/21.11.2646 12032077; PubMed Central PMCID: PMC126043.
47. Ito K, Inaba K. The disulfide bond formation (Dsb) system. Current opinion in structural biology. 2008;18(4):450–8. doi: 10.1016/j.sbi.2008.02.002 18406599.
48. Takahashi YH, Inaba K, Ito K. Characterization of the menaquinone-dependent disulfide bond formation pathway of Escherichia coli. The Journal of Biological Chemistry. 2004;279(45):47057–65. doi: 10.1074/jbc.M407153200 15347648.
49. Walden PM, Halili MA, Archbold JK, Lindahl F, Fairlie DP, Inaba K, et al. The alpha-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in gamma-proteobacteria. PLoS One. 2013;8(11):e81440. doi: 10.1371/journal.pone.0081440 24282596; PubMed Central PMCID: PMC3839904.
50. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(14):8478–83. doi: 10.1073/pnas.1331135100 12815105; PubMed Central PMCID: PMC166254.
51. Abreu IC, Guerra JF, Pereira RR, Silva M, Lima WG, Silva ME, et al. Hypercholesterolemic diet induces hepatic steatosis and alterations in mRNA expression of NADPH oxidase in rat livers. Arq Bras Endocrinol Metabol. 2014;58(3):251–9. 24863087.
52. Vogel H, Wheat CW. Accessing the transcriptome: how to normalize mRNA pools. Methods Mol Biol. 2011;772:105–28. doi: 10.1007/978-1-61779-228-1_6 22065434
53. Saka HA, Thompson JW, Chen Y-S, Kumar Y, Dubois LG, Moseley MA, et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Molecular microbiology. 2011;82(5):1185–203. doi: 10.1111/j.1365-2958.2011.07877.x 22014092
54. Nicholson TL, Olinger L, Chong K, Schoolnik G, Stephens RS. Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. Journal of Bacteriology. 2003;185(10):3179–89. doi: 10.1128/JB.185.10.3179-3189.2003 12730178; PubMed Central PMCID: PMC154084.
55. Mukhopadhyay S, Good D, Miller RD, Graham JE, Mathews SA, Timms P, et al. Identification of Chlamydia pneumoniae proteins in the transition from reticulate to elementary body formation. Mol Cell Proteomics. 2006;5(12):2311–8. doi: 10.1074/mcp.M600214-MCP200 16921167.
56. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9 13726518
57. Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein expression and purification. 2005;41(1):207–34. 15915565
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania