#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Interleukin 10 knock-down in bovine monocyte-derived macrophages has distinct effects during infection with two divergent strains of Mycobacterium bovis


Autoři: Kirsty Jensen aff001;  Joanne M. Stevens aff001;  Elizabeth J. Glass aff001
Působiště autorů: Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222437

Souhrn

Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), a cattle disease of global importance. M. bovis infects bovine macrophages (Mø) and subverts the host cell response to generate a suitable niche for survival and replication. We investigated the role of the anti-inflammatory cytokine interleukin (IL) 10 during in vitro infection of bovine monocyte-derived Mø (bMDM) with two divergent UK strains of M. bovis, which differentially modulate expression of IL10. The use of IL10-targeting siRNA revealed that IL10 inhibited the production of IL1B, IL6, tumour necrosis factor (TNF) and interferon gamma (IFNG) during infection of bMDM with the M. bovis strain G18. In contrast, IL10 only regulated a subset of these genes; TNF and IFNG, during infection with the M. bovis reference strain AF2122/97. Furthermore, nitric oxide (NO) production was modulated by IL10 during AF2122/97 infection, but not at the nitric oxide synthase 2 (NOS2) mRNA level, as observed during G18 infection. However, IL10 was found to promote survival of both M. bovis strains during early bMDM infection, but this effect disappeared after 24 h. The role of IL10-induced modulation of TNF, IFNG and NO production in M. bovis survival was investigated using siRNA targeting TNF, IFNG receptor 1 (IFNGR1) and NOS2. Knock-down of these genes individually did not promote survival of either M. bovis strain and therefore modulation of these genes does not account for the effect of IL10 on M. bovis survival. However, TNF knock-down was found to be detrimental to the survival of the M. bovis strain G18 during early infection. The results provide further evidence for the importance of IL10 during M. bovis infection of Mø. Furthermore, they highlight M. bovis strain specific differences in the interaction with the infected bMDM, which may influence the course of infection and progression of bovine TB.

Klíčová slova:

Biology and life sciences – Genetics – Gene expression – Biochemistry – Nucleic acids – Organisms – Neuroscience – Gene regulation – Developmental biology – Medicine and health sciences – Bacteria – Small interfering RNAs – RNA – Non-coding RNA – Messenger RNA – Physiology – Infectious diseases – Bacterial diseases – Tuberculosis – Tropical diseases – Actinobacteria – Mycobacterium tuberculosis – Immunology – Immune system – Innate immune system – Cytokines – Immune physiology – Molecular development – Neurochemistry – Neurochemicals – Nitric oxide – Interleukins – Mycobacterium bovis


Zdroje

1. Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015;264: 220–232. doi: 10.1111/imr.12268 25703562

2. Department for Environment, Food & Rural Affairs (DEFRA) report, March 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/785326/bovinetb-statsnotice-Q4-quarterly-13mar19.pdf

3. Broughan JM, Judge J, Ely E, Delahay RJ, Wilson G, Clifton-Hadley RS, et al. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol Infect. 2016;144: 2899–2926. doi: 10.1017/S095026881600131X 27452974

4. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 2006;4: 670–681. doi: 10.1038/nrmicro1472 16912712

5. Wright DM, Allen AR, Mallon TR, McDowell SW, Bishop SC, Glass EJ et al. Field-isolated genotypes of Mycobacterium bovis vary in virulence and influence case pathology but do not affect outbreak size. PLoS One. 2013;8: e74503. doi: 10.1371/journal.pone.0074503 24086351

6. Jensen K, Gallagher IJ, Johnston N, Welsh M, Skuce R, Williams JL et al. Variation in the early host-pathogen interaction of bovine macrophages with divergent UK Mycobacterium bovis strains. Infect Immun. 2018;86: e00385–17. doi: 10.1128/IAI.00385-17 29263113

7. Eberhardt MK, Barry PA. Pathogen manipulation of cIL-10 signaling pathways: opportunities for vaccine development? Curr Top Microbiol Immunol. 2014;380: 93–128. doi: 10.1007/978-3-662-43492-5_5 25004815

8. O’Leary S, O'Sullivan MP, Keane J. IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol. 2011;45: 172–180. doi: 10.1165/rcmb.2010-0319OC 20889800

9. Weiss DJ, Evanson OA, de Souza C, Abrahamsen MS. A critical role of interleukin-10 in the response of bovine macrophages to infection by Mycobacterium avium subsp paratuberculosis. Am J Vet Res. 2005;66: 721–726. 15900955

10. Denis M, Wedlock DN, Buddle BM. IFN-γ enhances bovine macrophage responsiveness to Mycobacterium bovis: Impact on bacterial replication, cytokine release and macrophage apoptosis. Immunol. Cell Biol. 2005;83: 643–650. doi: 10.1111/j.1440-1711.2005.01386.x 16266317

11. Hussain T, Zhao D, Shah SZA, Wang J, Yue R, Liao Y et al. MicroRNA 27a-3p regulates antimicrobial responses of murine macrophages infected by Mycobacterium avium subspecies paratuberculosis by targeting interleukin-10 and TGF-β-activated protein kinase 1 binding protein 2. Front Immunol. 2018;8: 1915. doi: 10.3389/fimmu.2017.01915 29375563

12. Wang X, Wu Y, Jiao J, Huang Q. Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinb.). 2018;108: 118–123.

13. Jensen K, Anderson JA, Glass EJ. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation. Vet Immunol Immunopathol. 2014;158: 224–232. doi: 10.1016/j.vetimm.2014.02.002 24598124

14. Jensen K, Gallagher IJ, Kaliszewska A, Zhang C, Abejide O, Gallagher MP et al. Live and inactivated Salmonella enterica serovar Typhimurium stimulate distinct transcriptome profiles in bovine macrophages and dendritic cells. Vet Res. 2016;47: 46. doi: 10.1186/s13567-016-0328-y 27000047

15. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23: 1289–1291. doi: 10.1093/bioinformatics/btm091 17379693

16. Untergrasser V, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3 –new capabilities and interfaces. Nucleic Acids Res. 2012;40: e115. doi: 10.1093/nar/gks596 22730293

17. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29: e45 doi: 10.1093/nar/29.9.e45 11328886

18. Rutz S, Ouyang W. Regulation of Interleukin-10 Expression. Adv Exp Med Biol. 2016;941: 89–116. doi: 10.1007/978-94-024-0921-5_5 27734410

19. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23: 75–93. doi: 10.1016/j.niox.2010.04.007 20438856

20. Rojas JM, Avia M, Martín V, Sevilla N. IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res. 2017;2017: 6104054. doi: 10.1155/2017/6104054 28316998

21. Duan L, Yi M, Chen J, Li S, Chen W. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun. 2016;473: 1229–1234. doi: 10.1016/j.bbrc.2016.04.045 27079235

22. Gabryšová L, Howes A, Saraiva M, O'Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol. 2014;380: 157–190. doi: 10.1007/978-3-662-43492-5_8 25004818

23. Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT et al. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity. 2006;24: 563–574. doi: 10.1016/j.immuni.2006.02.014 16713974

24. Buza JJ, Hikono H, Mori Y, Nagata R, Hirayama S, Bari AM et al. Neutralization of interleukin-10 significantly enhances gamma interferon expression in peripheral blood by stimulation with Johnin purified protein derivative and by infection with Mycobacterium avium subsp. paratuberculosis in experimentally infected cattle with paratuberculosis. Infect Immun. 2004;72: 2425–2428. doi: 10.1128/IAI.72.4.2425-2428.2004 15039374

25. Johnson L, Dean G, Rhodes S, Hewinson G, Vordermeier M, Wangoo A. Low-dose Mycobacterium bovis infection in cattle results in pathology indistinguishable from that of high-dose infection. Tuberculosis. 2007;87: 71–76. doi: 10.1016/j.tube.2006.04.002 16723276

26. Whelan AO, Coad M, Cockle PJ, Hewinson G, Vordermeier M, Gordon SV. Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle. PLoS One. 2010;5: e8527. doi: 10.1371/journal.pone.0008527 20049086

27. Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275: 715–719. doi: 10.1006/bbrc.2000.3169 10973788

28. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA. 1997;94: 5243–5248. doi: 10.1073/pnas.94.10.5243 9144222

29. Esquivel-Solís H, Vallecillo AJ, Benítez-Guzmán A, Adams LG, López-Vidal Y, Gutiérrez-Pabello JA. Nitric oxide not apoptosis mediates differential killing of Mycobacterium bovis in bovine macrophages. PLoS One. 2013;8: e63464. doi: 10.1371/journal.pone.0063464 23691050

30. Stenger S. Immunological control of tuberculosis: role of tumour necrosis factor and more. Ann Rheu. Dis. 2005;64 Suppl 4:iv24–28

31. Dorhoi A, Kaufmann SH. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol. 2014;26: 203–209. doi: 10.1016/j.smim.2014.04.003 24819298

32. Engele M, Stössel E, Castiglione K, Schwerdtner N, Wagner M, Bölcskei P et al. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol. 2002;168: 1328–1337. doi: 10.4049/jimmunol.168.3.1328 11801673

33. Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med. 1995;181: 257–270. doi: 10.1084/jem.181.1.257 7807006


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#