Preserving cultural heritage: Analyzing the antifungal potential of ionic liquids tested in paper restoration
Autoři:
Kevin Schmitz aff001; Sebastian Wagner aff001; Manfred Reppke aff001; Christian Ludwig Maier aff002; Elisabeth Windeisen-Holzhauser aff001; J. Philipp Benz aff001
Působiště autorů:
Wood Research Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
aff001; Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Munich-Großhadern, Germany
aff002; Nitrochemie Aschau GmbH, Aschau am Inn, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0219650
Souhrn
Early industrialization and the development of cheap production processes for paper have led to an exponential accumulation of paper-based documents during the last two centuries. Archives and libraries harbor vast amounts of ancient and modern documents and have to undertake extensive endeavors to protect them from abiotic and biotic deterioration. While services for mechanical preservation such as ex post de-acidification of historic documents are already commercially available, the possibilities for long-term protection of paper-based documents against fungal attack (apart from temperature and humidity control) are very limited. Novel processes for mechanical enhancement of damaged cellulosic documents use Ionic Liquids (IL) as essential process components. With some of these ILs having azole-functionalities similar to well-known fungicides such as Clotrimazole, the possibility of antifungal activities of these ILs was proposed but has not yet been experimentally confirmed. We evaluated the potency of four ILs with potential application in paper restoration for suppression of fungal growth on five relevant paper-infesting molds. The results revealed a general antifungal activity of all ILs, which increased with the size of the non-polar group. Physiological experiments and ultimate elemental analysis allowed to determine the minimal inhibitory concentration of each IL as well as the residual IL concentration in process-treated paper. These results provide valuable guidelines for IL-applications in paper restoration processes with antifungal activity as an added benefit. With azoles remaining in the paper after the process, simultaneous repair and biotic protection in treated documents could be facilitated.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Physical sciences – Chemistry – Research and analysis methods – Fungi – Mycology – Developmental biology – Medicine and health sciences – Chemical compounds – Microbiology – Fungal molds – Aspergillus – Organic compounds – Organic chemistry – Pharmacology – Fungal reproduction – Fungal spores – Microbial physiology – Microbial control – Antimicrobials – Drugs – Research facilities – Antifungals – Microbial growth and development – Fungal growth – Cellulose – Information centers – Archives – Libraries
Zdroje
1. Area MC, Cheradame H. Paper Aging and Degradation: Recent Findings and Research Methods. Bioresources. 2011;6(4):5307–37.
2. Jiang ZC, Fan JJ, Budarin VL, Macquarrie DJ, Gao Y, Li TZ, et al. Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose. Sustain Energ Fuels. 2018;2(5):936–40. doi: 10.1039/c8se00045j
3. Cedzová M, Gállová I, Katuščák S. Patents for Paper Deacidification. Restaurator2006. p. 35.
4. Cedzová M, Gállová I, Katuščák S. Patents for Paper Deacidification. Restaurator International Journal for the Preservation of Library and Archival Material. 2008;27(1):35–45. doi: 10.1515/REST.2006.35
5. Maier CL. Papierverfestigung—neue Lösungswege [Dissertation]: Ludwigs-Maximilians-University Munich; 2019. 0001/UMC 26186
6. Borrego S, Lavin P, Perdomo I, Gómez de Saravia S, Guiamet P. Determination of Indoor Air Quality in Archives and Biodeterioration of the Documentary Heritage. ISRN Microbiology. 2012;2012:10. doi: 10.5402/2012/680598 23762758
7. Nyuksha JP. Biodeterioration and biostability of Library materials. Restaurator International Journal for the Preservation of Library and Archival Material. 1980;4(1):71–7. doi: 10.1515/rest.1980.4.1.71
8. Sequeira SO, Carvalho HPd, Mesquita N, Portugal A, Macedo MF. Fungal stains on paper: is what you see what you get? Conservar Património. 2019;31. doi: 10.14568/cp2018007
9. Mesquita N, Portugal A, Videira S, Rodriguez-Echeverria S, Bandeira AML, Santos MJA, et al. Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeter Biodegr. 2009;63(5):626–9.
10. Skora J, Gutarowska B, Pielech-Przybylska K, Stepien L, Pietrzak K, Piotrowska M, et al. Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia (Bologna). 2015;31(3):389–401. doi: 10.1007/s10453-015-9372-8 26346115
11. Zyska B. Fungi isolated from library materials: A review of the literature. Int Biodeter Biodegr. 1997;40(1):43–51.
12. da Silva M, Moraes AML, Nishikawa MM, Gatti MJA, de Alencar MAV, Brandao LE, et al. Inactivation of fungi from deteriorated paper materials by radiation. Int Biodeter Biodegr. 2006;57(3):163–7. doi: 10.1016/j.ibiod.2006.02.003
13. Florian M-LE. Fungal Facts: Solving Fungal Problems on Heritage Collections in Museums and Archives. Journal of the American Institute for Conservation. 2004;43(1):114–6.
14. Ricelli A, Fabbri AA, Fanelli C, Menicagli R, Samaritani S, Pini D, et al. Fungal growth on samples of paper: Inhibition by new antifungals. Restaurator. 1999;20(2):97–107. doi: 10.1515/rest.1999.20.2.97
15. Sanmartin P, DeAraujo A, Vasanthakumar A. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials. Microb Ecol. 2018;76(1):64–80. doi: 10.1007/s00248-016-0770-4 27117796
16. Sequeira SO, Cabrita EJ, Macedo MF. Fungal Biodeterioration of Paper: How are Paper and Book Conservators Dealing with it? An International Survey. Restaurator International Journal for the Preservation of Library and Archival Material. 2014;35(2):181–99.
17. Szczepanowska H, Lovett CM. A study of the removal and prevention of fungal stains on paper. Journal of the American Institute for Conservation. 1992;31(2):147–60.
18. Krupp A, Langerbeins K, Maier C, Ramin M, Sünkel K, inventors; Nitrochemie Aschau GmbH assignee. A method for processing materials comprising fibers, Luxembourg (2016).
19. Ramin M, Langerbeins K, Maier C, SÜNKEL K, Krupp A, inventors; Nitrochemie Aschau GmbH assignee. Process for the treatment of materials containing fibers, Europe (2017).
20. Araque JC, Hettige JJ, Margulis CJ. Modern Room Temperature Ionic Liquids, a Simple Guide to Understanding Their Structure and How It May Relate to Dynamics. J Phys Chem B. 2015;119(40):12727–40. doi: 10.1021/acs.jpcb.5b05506 26244375
21. Hayes R, Warr GG, Atkin R. Structure and Nanostructure in Ionic Liquids. Chemical Reviews. 2015;115(13):6357–426. doi: 10.1021/cr500411q 26028184
22. Wilkes JS. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 2002;4(2):73–80. doi: 10.1039/b110838g
23. Plempel M, Bartmann K, Buchel KH. Experimental study of a new orally effective broad-spectrum antimyocotic agent. Ger Med Mon. 1969;14(11):532–7. 5392477
24. Godefroi EF, Heeres J, Van Cutsem J, Janssen PA. The preparation and antimycotic properties of derivatives of 1-phenethylimidazole. J Med Chem. 1969;12(5):784–91. doi: 10.1021/jm00305a014 4897900
25. Park N-H, Shin K-H, Kang MK. 34—Antifungal and Antiviral Agents. In: Dowd FJ, Johnson BS, Mariotti AJ, editors. Pharmacology and Therapeutics for Dentistry; doi: 10.1016/B978-0-323-39307-2.00034-5 Seventh Edition ed 2017. p. 488–503.
26. Shuter J. Antifungal and antiviral agents: A review. Cancer Invest. 1999;17(2):145–52. 10071599
27. Sud IJ, Chou DL, Feingold DS. Effect of Free Fatty-Acids on Liposome Susceptibility to Imidazole Anti-Fungals. Antimicrob Agents Ch. 1979;16(5):660–3. doi: 10.1128/Aac.16.5.660 393166
28. Vogel HJ. A Convenient Growth Medium for Neurospora crassa. Microbial Genetics Bulletin. 1956;13:42–7.
29. White TJ, Bruns T, Lee S, Taylor J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols—A Guide to Methods and Applications. 1: Elsevier Inc.; 1989. p. 315–22.
30. Ferreira A, Glass VB, Louise N. PCR from fungal spores after microwave treatment. Fungal Genetics Report. 1996;43:Aerticle 9.
31. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic acids research. 2008;36(Web Server issue):W5–9. doi: 10.1093/nar/gkn201 18440982
32. Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP. Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants. Bioresource technology. 2018;268:470–9. doi: 10.1016/j.biortech.2018.07.103 30114666
33. Gäumann E. Familie Meanosporaceae. Die Pilze—Grundzüge ihrer Entwicklungsgeschichte und Morphologie. 2: Springer Basel AG; 1964. p. 104–70.
34. Rastegari AA. Molecular Mechanism of Cellulase Production Systems in Penicillium. In: Gupta VK, Rodriguez-Couto S, editors. New and Future Developments in Microbial Biotechnology and Bioengineering; doi: 10.1016/B978-0-444-63501-3.00008-9: Elsevier B.V.; 2017. p. 153–66.
35. Lakshmikant. Cellulose degradation and cellulase activity of five cellulolytic fungi. World J Microbiol Biotechnol. 1990;6(1):64–6. doi: 10.1007/BF01225357 24429892
36. Qaisar S, Zohra RR, Aman A, Qader SA. Enhanced production of cellulose degrading CMCase by newly isolated strain of Aspergillus versicolor. Carbohydr Polym. 2014;104:199–203. doi: 10.1016/j.carbpol.2014.01.014 24607178
37. Vale LHFD, Filho EXF, Miller R N.G., Ricart CAO, deSousa MV. Cellulase Systems in Trichoderma: An Overview. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and Biology of Trichoderma; Elsevier B.V.; 2014. p. 229–44.
38. Schönherr J. A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci. 2002;58(4):343–51. doi: 10.1002/ps.462 11975182
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania