The effect of cathodal tDCS on fear extinction: A cross-measures study
Autoři:
Ana Ganho-Ávila aff001; Óscar F. Gonçalves aff002; Raquel Guiomar aff001; Paulo Sérgio Boggio aff004; Manish Kumar Asthana aff004; Angelos-Miltiadis Krypotos aff006; Jorge Almeida aff001
Působiště autorů:
Proaction Laboratory, Cognitive and Behavior Center for Research and Intervention Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
aff001; Neuropsychophysiology Lab, CiPsi, School of Psychology, University of Minho, Braga, Portugal
aff002; Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States of America
aff003; Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
aff004; Department of Humanities and Social Sciences, Indian Institute of Technology, Roorkee, India
aff005; Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221282
Souhrn
Background
Extinction-based procedures are often used to inhibit maladaptive fear responses. However, because extinction procedures show efficacy limitations, transcranial direct current stimulation (tDCS) has been suggested as a promising add-on enhancer.
Objective
In this study, we tested how cathodal tDCS over the right dorsolateral prefrontal cortex affects extinction and tried to unveil the processes at play that boost the effectiveness of extinction procedures and its translational potential to the treatment of anxiety disorders.
Methods
We implemented a fear conditioning paradigm whereby 41 healthy women (mean age = 20.51 ± 5.0) were assigned to either cathodal tDCS (n = 27) or sham tDCS (n = 16). Fear responses were measured with self-reports, autonomic responses, and implicit avoidance tendencies.
Results
Cathodal tDCS shows no statistically significant effect in extinction, according to self-reports, and seems to even negatively affect fear conditioned skin conductance responses. However, one to three months after the tDCS session and extinction, we found a group difference in the action tendencies towards the neutral stimuli (F (1, 41) = 12.04, p = .001, ηp2 = .227), with the cathodal tDCS group (as opposed to the sham group) showing a safety learning (a positive bias towards the CS-), with a moderate effect size. This suggests that cathodal tDCS may foster stimuli discrimination, leading to a decreased generalization effect.
Discussion
Cathodal tDCS may have enhanced long-term distinctiveness between threatening cues and perceptively similar neutral cues through a disambiguation process of the value of the neutral stimuli—a therapeutic target in anxiety disorders. Future studies should confirm these results and extend the study of cathodal tDCS effect on short term avoidance tendencies.
Klíčová slova:
Biology and life sciences – Research and analysis methods – Neuroscience – Cognitive science – Cognitive psychology – Learning – Learning and memory – Psychology – Social sciences – Medicine and health sciences – Physiology – Behavior – Ecology and environmental sciences – Ecology – Ecological metrics – Emotions – Cognition – Memory – Brain mapping – Sensory perception – Electrophysiology – Neurophysiology – Bioassays and physiological analysis – Electrophysiological techniques – Brain electrophysiology – Sensory cues – Fear – Transcranial stimulation – Conditioned response – Behavioral conditioning – Fear conditioning – Transcranial direct-current stimulation – Memory recall – Extinction risk
Zdroje
1. Keller MB, Yonkers KA, Warshaw MG, Pratt LA, Gollan JK, Massion AO, et al. Remission and relapse in subjects with panic disorder and panic with agoraphobia: A prospective short-interval naturalistic follow-up. J Nerv Ment Dis. [Internet] 1994 May; 182(2):290–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10678311
2. Brown TA, Antony MM, Barlow DH. Diagnostic comorbidity in panic disorder: Effect on treatment outcome and course of comorbid diagnoses following treatment. Journal of Consulting and Clinical Psychology [Internet]. 1995 Jun; 63(3): 408–18. Avaliable from: https://www.ncbi.nlm.nih.gov/pubmed/7608353 doi: 10.1037//0022-006x.63.3.408 7608353
3. Mauss IB, Robinson MD. Measures of emotion: A review. Cogn Emot [Internet]. 2009 Feb; 23(2):209–37. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19809584 doi: 10.1080/02699930802204677 19809584
4. Asthana M, Nueckel K, Mühlberger A, Neueder D, Polak T, Domschke K, et al. Effects of transcranial direct current stimulation on consolidation of fear memory. Front psychiatry [Internet]. 2013 Sep; 4:107. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24069003 doi: 10.3389/fpsyt.2013.00107 24069003
5. Feeser M, Prehn K, Kazzer P, Mungee A, Bajbouj M. Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimul Basic, Transl Clin Res Neuromodulation [Internet]. 2014 Jan; 7(1):105–12. Available from: https://doi.org/10.1016/j.brs.2013.08.006
6. Bindman LJ, Lippold OCJ, Redfearn J. WT. Long-lasting Changes in the Level of the Electrical Activity of the Cerebral Cortex produced by Polarizing Currents. Nature [Internet]. 1962 Nov; 196(4854):584–5. Available from: https://doi.org/10.1038/196584a0
7. Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol [Internet]. 2017 Jan; 128(1):56–92. Available from: http://www.sciencedirect.com/science/article/pii/S1388245716306344 doi: 10.1016/j.clinph.2016.10.087 27866120
8. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol [Internet]. 2000 Sep; 527 Pt 3(Pt 3):633–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10990547
9. Almeida J, Martins AR, Bergström F, Amaral L, Freixo A, Ganho-Ávila A, et al. Polarity-specific transcranial direct current stimulation effects on object-selective neural responses in the inferior parietal lobe. Cortex [Internet]. 2017 Set; 94:176–81. Available from: http://www.sciencedirect.com/science/article/pii/S0010945217302204 doi: 10.1016/j.cortex.2017.07.001 28778012
10. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. [Internet] 2012 Jan; 216(1): 1–10. Availabble from: https://www.ncbi.nlm.nih.gov/pubmed/21989847 doi: 10.1007/s00221-011-2891-9 21989847
11. Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, et al. Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional Connectivity in the Primate Brain. Curr Biol [Internet]. 2017 Oct; 27(20):3086–3096.e3. Available from: doi: 10.1016/j.cub.2017.09.020 29033331
12. Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun [Internet]. 2018 Fe; 9(1):483. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29396478 doi: 10.1038/s41467-018-02928-3 29396478
13. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol [Internet]. 2005 Oct; 568(Pt 2):653–63. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16037080 doi: 10.1113/jphysiol.2005.088310 16037080
14. Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul [Internet]. 2017 Jan; 10(1):51–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28104085 doi: 10.1016/j.brs.2016.10.001 28104085
15. Ironside M, O’Shea J, Cowen PJ, Harmer CJ. Frontal Cortex Stimulation Reduces Vigilance to Threat: Implications for the Treatment of Depression and Anxiety. Biol Psychiatry [Internet]. 2016 May; 79(10):823–30. Available from: doi: 10.1016/j.biopsych.2015.06.012 26210058
16. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction Learning in Humans: Role of the Amygdala and vmPFC. Neuron [Internet]. 2004 Sep; 43(6):897–905. Available from: doi: 10.1016/j.neuron.2004.08.042 15363399
17. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of Fear Extinction in Humans Activates the Ventromedial Prefrontal Cortex and Hippocampus in Concert. Biol Psychiatry [Internet]. 2007 Sep; 62(5):446–54. Available from: doi: 10.1016/j.biopsych.2006.10.011 17217927
18. Schiller D, Kanen JW, LeDoux JE, Monfils M-H, Phelps EA. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proc Natl Acad Sci U S A [Internet]. 2013 Dec; 110(50):20040–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24277809 doi: 10.1073/pnas.1320322110 24277809
19. Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS). Front Behav Neurosci [Internet]. 2018 Apr;12:76. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29922133 doi: 10.3389/fnbeh.2018.00076 29922133
20. van ‘t Wout M, Mariano TY, Garnaat SL, Reddy MK, Rasmussen SA, Greenberg BD. Can Transcranial Direct Current Stimulation Augment Extinction of Conditioned Fear? Brain Stimul [Internet]. 2016 Jul; 9(4):529–36. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27037186 doi: 10.1016/j.brs.2016.03.004 27037186
21. Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature [Internet]. 2015 Nov 12; 527(7577):179–85. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26536109 doi: 10.1038/nature15698 26536109
22. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ. Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem [Internet]. 2006 Nov; 13(6):728–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17142302 doi: 10.1101/lm.306106 17142302
23. Abend R, Jalon I, Gurevitch G, Sar-El R, Shechner T, Pine DS, et al. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry [Internet]. 2016 Oct; 6(10):e913–e913. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27727241 doi: 10.1038/tp.2016.197 27727241
24. Mungee A, Burger M, Bajbouj M. No Effect of Cathodal Transcranial Direct Current Stimulation on Fear Memory in Healthy Human Subjects. Brain Sci [Internet]. 2016 Nov; 6(4):55. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27827903
25. Shiozawa P, da Silva ME, Cordeiro Q. Transcranial Direct Current Stimulation (tDCS) for Panic Disorder: A Case Study. Journal of Depression and Anxiety. OMICS International [Internet] 2014. p. 1–3. Available from: https://www.omicsonline.org/open-access/transcranial-direct-current-stimulation-tdcs-for-panic-disorder-a-case-study-2167-1044-3-158.php?aid=26694
26. Shiozawa P, Leiva APG, Castro CDC, da Silva ME, Cordeiro Q, Fregni F, et al. Transcranial Direct Current Stimulation for Generalized Anxiety Disorder: A Case Study. Biol Psychiatry. 2014;75(11):e17–8. doi: 10.1016/j.biopsych.2013.07.014 23958182
27. Alberini CM, LeDoux JE. Memory reconsolidation. Curr Biol [Internet]. 2013 Sep; 23(17): R746–50. Available from: doi: 10.1016/j.cub.2013.06.046 24028957
28. Golkar A, Tjaden C, Kindt M. Vicarious extinction learning during reconsolidation neutralizes fear memory. Behav Res Ther [Internet]. 2017 May;92:87–93. Available from: http://www.sciencedirect.com/science/article/pii/S0005796717300396 doi: 10.1016/j.brat.2017.02.004 28286265
29. Monfils M-H, Cowansage KK, Klann E, LeDoux JE. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science [Internet]. 2009 May 15; 324(5929):951–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19342552 doi: 10.1126/science.1167975 19342552
30. Åhs F, Kragel PA, Zielinski DJ, Brady R, LaBar KS. Medial prefrontal pathways for the contextual regulation of extinguished fear in humans. Neuroimage [Internet]. 2015 Nov 15; 122:262–71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26220745 doi: 10.1016/j.neuroimage.2015.07.051 26220745
31. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. J Cogn Neurosci [Internet]. 2002 Nov; 14(8):1215–29. Available from: doi: 10.1162/089892902760807212 12495527
32. Boucsein W, Fowles DC, Grimnes S, Ben-Shakhar G. Publication recommendations for electrodermal measurements. Psychophysiology [Internet]. 2012 Aug; 49(8):1017–34. Available from: doi: 10.1111/j.1469-8986.2012.01384.x 22680988
33. Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev [Internet]. 2017 Jun; 77:247–85. Available from: http://www.sciencedirect.com/science/article/pii/S0149763416308466 doi: 10.1016/j.neubiorev.2017.02.026 28263758
34. Heeren A, Baeken C, Vanderhasselt M-A, Philippot P, de Raedt R. Impact of Anodal and Cathodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex during Attention Bias Modification: An Eye-Tracking Study. PLoS One [Internet]. 2015 Apr;10(4):e0124182. Available from: doi: 10.1371/journal.pone.0124182 25909846
35. Frijda NH. Impulsive action and motivation. Biol Psychol [Internet]. 2010 Jul; 84(3):570–9. Available from: http://www.sciencedirect.com/science/article/pii/S0301051110000098 doi: 10.1016/j.biopsycho.2010.01.005 20064583
36. Lang PJ, Bradley MM. Emotion and the motivational brain. Biol Psychol [Internet]. 2010 Jul;84(3):437–50. Available from: http://www.sciencedirect.com/science/article/pii/S0301051109002257 doi: 10.1016/j.biopsycho.2009.10.007 19879918
37. Moors A, De Houwer J. Automaticity: A Theoretical and Conceptual Analysis. Vol. 132, Psychological Bulletin. Moors, Agnes: Department of Psychology, Ghent University, Henri Dunantlaan 2, Ghent, Belgium, B-9000, agnes.moors@ugent.be: American Psychological Association; 2006. p. 297–326. doi: 10.1037/0033-2909.132.2.297 16536645
38. Rinck M, Becker ES. Approach and avoidance in fear of spiders. Journal of Behavior Therapy and Experimental Psychiatry [Internet] 2007 Jun. 38(2):105–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17126289 doi: 10.1016/j.jbtep.2006.10.001 17126289
39. Krypotos A-M, Effting M, Kindt M, Beckers T. Avoidance learning: a review of theoretical models and recent developments. Front Behav Neurosci [Internet]. 2015 Jul; 21;9:189. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26257618
40. Dymond S, Dunsmoor JE, Vervliet B, Roche B, Hermans D. Fear Generalization in Humans: Systematic Review and Implications for Anxiety Disorder Research. Behav Ther [Internet]. 2015 Sep; 46(5):561–82. Available from: http://www.sciencedirect.com/science/article/pii/S0005789414001348 doi: 10.1016/j.beth.2014.10.001 26459838
41. Solomon RL, Kamin LJ, Wynne LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnorm Soc Psychol. 1953;48(2):291–302.
42. Vervliet B, Indekeu E. Low-Cost Avoidance Behaviors are Resistant to Fear Extinction in Humans. Frontiers in Behavioral Neuroscience [Internet]. 2015 Dec.; 351. Available from: https://www.frontiersin.org/article/10.3389/fnbeh.2015.00351
43. Lebron-Milad K, Milad MR. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol Mood Anxiety Disord [Internet]. 2012 Feb;2:3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22738383 doi: 10.1186/2045-5380-2-3 22738383
44. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA [Internet]. 1994 Sep 14;272(10):828–9. Available from: https://doi.org/10.1001/jama.1994.03520100096046
45. Boucsein W. Electrodermal Activity. Boucsein W, editor. Springer US; 2012.
46. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul [Internet]. 2012 Jul; 5(3):175–95. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22037126 doi: 10.1016/j.brs.2011.03.002 22037126
47. Bradley M & Lang P. International Affective Digitized Sounds (2nd Edition; IADS-2): Stimuli, instruction manual and affective ratings. Gainesville, FL: The Center for Research in Psychophysiology;
48. Huskisson EC. Measurement of pain. Lancet. 1974; 2:1127–31. doi: 10.1016/s0140-6736(74)90884-8 4139420
49. Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Front Neurosci [Internet]. 2017 Nov; 11:641. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29213226 doi: 10.3389/fnins.2017.00641 29213226
50. Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage [Internet]. 2011 Sep; 58(1):26–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21703350 doi: 10.1016/j.neuroimage.2011.06.018 21703350
51. Jasper HH. The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958;10:371–5.
52. Lang P. Behavioral treatment and bio-behavioral assessment: computer applications. In: Sidowski JB, Johnson JH, Williams TA, editors. Technology in mental health care delivery systems Norwood NJ: Ablex Publishing; 1980 p 119–137. Norwood, NJ: Ablex Publishing; 1980. p. 119–37.
53. Ganho-Ávila A, Moura-Ramos M, Gonçalves O, Almeida J. Measuring vulnerability to anxiety: Factorial structure, reliability, validity and discriminatory accuracy of the Anxiety Sensitivity Index-3-PT. Meas Eval Couns Dev. 2019 Jun; in press.
54. Canavarro MC. Inventário de Sintomas Psicopatológicos (BSI): Uma revisão crítica dos estudos realizados em Portugal. In: Avaliação Psicológica: Instrumentos Validados para a População Portuguesa. Coimbra: Quarteto Editora; 2007. p. 305–30. In: Avaliação Psicológica: Instrumentos Validados para a População Portuguesa. Coimbra: Quarteto Editora; 2007. p. 305–30.
55. Spielberger C. State-Trait Anxiety Inventory: A compreensive bibliography. 2nd ed. Consulting Psychologists Press, editor. Palo Alto; 1989.
56. Krypotos A-M, Effting M, Arnaudova I, Kindt M, Beckers T. Avoided by Association: Acquisition, Extinction, and Renewal of Avoidance Tendencies Toward Conditioned Fear Stimuli. Clin Psychol Sci [Internet]. 2013 Oct; 2(3):336–43. Available from: https://doi.org/10.1177/2167702613503139
57. Lonsdorf T. B., Merz C. J., & Fullana M. A. (2019). Fear Extinction Retention: Is It What We Think It Is? Biol Psych, [Internet]. 2019 Jun; 85(12): 1074–1082. Available from: https://doi.org/10.1016/j.biopsych.2019.02.011
58. Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive Brain Stimulation with Low-Intensity Electrical Currents: Putative Mechanisms of Action for Direct and Alternating Current Stimulation. Neurosci [Internet]. 2009 Dec; 16(3):285–307. Available from: https://doi.org/10.1177/1073858409336227
59. Dunsmoor JE, Campese VD, Ceceli AO, LeDoux JE, Phelps EA. Novelty-Facilitated Extinction: Providing a Novel Outcome in Place of an Expected Threat Diminishes Recovery of Defensive Responses. Biol Psychiatry [Internet]. 2015 Aug;78(3):203–9. Available from: http://www.sciencedirect.com/science/article/pii/S0006322314009883 doi: 10.1016/j.biopsych.2014.12.008 25636175
60. Morriss J, Christakou A, van Reekum CM. Intolerance of uncertainty predicts fear extinction in amygdala-ventromedial prefrontal cortical circuitry. Biol Mood Anxiety Disord [Internet]. 2015 Jul; 10;5:4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26161254
61. Boddez Y, Baeyens F, Luyten L, Vansteenwegen D, Hermans D, Beckers T. Rating data are underrated: Validity of US expectancy in human fear conditioning. J Behav Ther Exp Psychiatry [Internet]. Jun 2013; 44(2):201–6. Available from: http://www.sciencedirect.com/science/article/pii/S0005791612000778 doi: 10.1016/j.jbtep.2012.08.003 23207968
62. Kindt M, Soeter M, Vervliet B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci [Internet]. 2009 Feb 15;12:256. Available from: doi: 10.1038/nn.2271 19219038
63. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A [Internet]. 2012 Apr;109 (17): 6710–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22493252 doi: 10.1073/pnas.1121147109 22493252
64. Schroyens N, Beckers T, Kindt M. In Search for Boundary Conditions of Reconsolidation: A Failure of Fear Memory Interference. Frontiers in Behavioral Neuroscience. [Internet]. 2017 Apr; 11: 65. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395559/ doi: 10.3389/fnbeh.2017.00065 28469565
65. Luyten L, Beckers T. A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats. Neurobiol Learn Mem [Internet]. 2017 Oct;144: 208–15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28765085 doi: 10.1016/j.nlm.2017.07.014 28765085
66. Thair H, Holloway AL, Newport R, & Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Frontiers in neuroscience. [Internet] 2017; 11: 641. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29213226 doi: 10.3389/fnins.2017.00641 29213226
67. Rusticus SA. & Lovato CY. al. Impact of Sample Size and Variability on the Power and Type I Error Rates of Equivalence Tests: A Simulation Study. Practical assessment, research & evaluation. [Internet] 2015 Nov; 19 (11). Available from: http://pareonline.net/getvn.asp?v=19&n=11
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania