#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparative phenotypic profiling of the JAK2 inhibitors ruxolitinib, fedratinib, momelotinib, and pacritinib reveals distinct mechanistic signatures


Autoři: Jack W. Singer aff001;  Suliman Al-Fayoumi aff001;  Jason Taylor aff001;  Sharlene Velichko aff003;  Alison O’Mahony aff003
Působiště autorů: CTI BioPharma Corp., Seattle, Washington, United States of America aff001;  Elson Floyd College of Medicine, Washington State University, Seattle, Washington, United States of America aff002;  Eurofins Discovery, Phenotypic Services, Burlingame, California, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222944

Souhrn

Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling is critical to multiple cellular processes, including survival, differentiation, and proliferation. JAK-STAT signaling dysregulation has been noted in inflammatory disorders, and aberrant JAK2 pathway activation has been implicated in myelofibrosis and polycythemia vera. Moreover, 4 therapeutic JAK2 inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) have either been approved or are in advanced clinical development for myelofibrosis. Although all inhibit JAK2, reports indicate that they also inhibit other kinases. Profiling based solely on in vitro potencies is insufficient to predict the observed clinical effects. To provide further translational insights into clinical outcomes, we compared phenotypic biomarker profiles of ruxolitinib, fedratinib, momelotinib, and pacritinib in the BioMAP® Diversity PLUS panel of 12 human primary cell systems designed to recapitulate key aspects of tissue and disease states. Biomarker activity profiles that represent mechanistic signatures for each agent were compared with each other and a database of reference benchmark profiles. At clinically relevant concentrations, these agents had distinct biomarker impacts indicating diverse mechanistic signatures, suggesting divergent clinical effects for each agent. They disparately modulated inflammatory cytokine production and immune function. At clinically relevant concentrations, ruxolitinib had the broadest scope of activities across all 12 cellular systems, whereas pacritinib was more specific for the BT system (modelling T cell-dependent B cell activation) and exhibited the strongest inhibition of sIL-17A, sIL-2, and sIL-6. All 4 agents were antiproliferative to B cells, but ruxolitinib and momelotinib were also antiproliferative to T cells. These differential activities likely reflect distinct secondary pharmacology for these agents known primarily as JAK2 inhibitors. The phenotypic analysis reported herein represents key data on distinct modes-of-action that may provide insights on clinical outcomes reported for these agents. Such translational findings may also inform the development of next-generation molecules with improved efficacy and safety.

Klíčová slova:

Cell differentiation – Inflammation – T cells – B cells – Biomarkers – Inflammatory diseases – Kinase inhibitors – Primary cells


Zdroje

1. Aittomaki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol. 2014;114(1):18–23. doi: 10.1111/bcpt.12164 24164900

2. Harrison DA. The Jak/STAT pathway. Cold Spring Harb Perspect Biol. 2012;4(3).

3. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. doi: 10.1146/annurev-med-051113-024537 25587654

4. Boland BS, Sandborn WJ, Chang JT. Update on Janus kinase antagonists in inflammatory bowel disease. Gastroenterol Clin North Am. 2014;43(3):603–17. doi: 10.1016/j.gtc.2014.05.011 25110261

5. Semerano L, Decker P, Clavel G, Boissier MC. Developments with investigational Janus kinase inhibitors for rheumatoid arthritis. Expert Opin Investig Drugs. 2016;25(12):1355–9. doi: 10.1080/13543784.2016.1249565 27748152

6. Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: A systematic review. J Am Acad Dermatol. 2017;76(4):745–53. doi: 10.1016/j.jaad.2016.12.004 28169015

7. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. doi: 10.1016/S0140-6736(05)71142-9 15781101

8. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113 15858187

9. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023 15837627

10. Al-Ali HK, Vannucchi AM. Managing patients with myelofibrosis and low platelet counts. Ann Hematol. 2017;96(4):537–48. doi: 10.1007/s00277-016-2697-8 27209535

11. Harrison C, Mesa R, Ross D, Mead A, Keohane C, Gotlib J, et al. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol. 2013;6(5):511–23. doi: 10.1586/17474086.2013.827413 24083419

12. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122(25):4047–53. doi: 10.1182/blood-2013-02-485888 24174625

13. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. doi: 10.1056/NEJMoa1110556 22375970

14. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557 22375971

15. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1(5):643–51. doi: 10.1001/jamaoncol.2015.1590 26181658

16. Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5(2):e73–e81. doi: 10.1016/S2352-3026(17)30237-5 29275119

17. Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018;4(5):652–9. doi: 10.1001/jamaoncol.2017.5818 29522138

18. Hosseini MM, Kurtz SE, Abdelhamed S, Mahmood S, Davare MA, Kaempf A, et al. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia. 2018;32(11):2374–87. doi: 10.1038/s41375-018-0112-2 29743719

19. Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res. 2014;20(8):2051–9. doi: 10.1158/1078-0432.CCR-13-0279 24583800

20. Singer JW, Al-Fayoumi S, Ma H, Komrokji RS, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol. 2016;8:11–9. doi: 10.2147/JEP.S110702 27574472

21. Zhou T, Georgeon S, Moser R, Moore DJ, Caflisch A, Hantschel O. Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia. 2014;28(2):404–7. doi: 10.1038/leu.2013.205 23823659

22. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34. doi: 10.1126/science.1075762 12471243

23. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006;18(1):39–48. doi: 10.1016/j.coi.2005.11.006 16337366

24. Rhyasen GW, Starczynowski DT. IRAK signalling in cancer. Br J Cancer. 2015;112(2):232–7. doi: 10.1038/bjc.2014.513 25290089

25. Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget. 2018;9(70):33416–39. doi: 10.18632/oncotarget.26058 30279971

26. Zitvogel L, Rusakiewicz S, Routy B, Ayyoub M, Kroemer G. Immunological off-target effects of imatinib. Nat Rev Clin Oncol. 2016;13(7):431–46. doi: 10.1038/nrclinonc.2016.41 27030078

27. Berg EL, Polokoff MA, O’Mahony A, Nguyen D, Li X. Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems—a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015;16(1):1008–29. doi: 10.3390/ijms16011008 25569083

28. Ciceri P, Muller S, O’Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol. 2014;10(4):305–12. doi: 10.1038/nchembio.1471 24584101

29. Kunkel EJ, Dea M, Ebens A, Hytopoulos E, Melrose J, Nguyen D, et al. An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J. 2004;18(11):1279–81. doi: 10.1096/fj.04-1538fje 15208272

30. Kunkel EJ, Plavec I, Nguyen D, Melrose J, Rosler ES, Kao LT, et al. Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMAP analysis in complex human primary cell-based models. Assay Drug Dev Technol. 2004;2(4):431–41. doi: 10.1089/adt.2004.2.431 15357924

31. Berg EL, Yang J, Melrose J, Nguyen D, Privat S, Rosler E, et al. Chemical target and pathway toxicity mechanisms defined in primary human cell systems. J Pharmacol Toxicol Methods. 2010;61(1):3–15. doi: 10.1016/j.vascn.2009.10.001 19879948

32. Berg EL, Yang J, Polokoff MA. Building predictive models for mechanism-of-action classification from phenotypic assay data sets. J Biomol Screen. 2013;18(10):1260–9. doi: 10.1177/1087057113505324 24088371

33. Melton AC, Melrose J, Alajoki L, Privat S, Cho H, Brown N, et al. Regulation of IL-17A production is distinct from IL-17F in a primary human cell co-culture model of T cell-mediated B cell activation. PLoS One. 2013;8(3):e58966. doi: 10.1371/journal.pone.0058966 23505568

34. Shah F, Stepan AF, O’Mahony A, Velichko S, Folias AE, Houle C, et al. Mechanisms of skin toxicity associated with metabotropic glutamate receptor 5 negative allosteric modulators. Cell Chem Biol. 2017;24(7):858–69 e5. doi: 10.1016/j.chembiol.2017.06.003 28669525

35. Haselmayer P, Camps M, Muzerelle M, El Bawab S, Waltzinger C, Bruns L, et al. Characterization of novel PI3Kdelta inhibitors as potential therapeutics for SLE and lupus nephritis in pre-clinical studies. Front Immunol. 2014;5:233. doi: 10.3389/fimmu.2014.00233 24904582

36. Wong WR, Oliver AG, Linington RG. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics. Chem Biol. 2012;19(11):1483–95. doi: 10.1016/j.chembiol.2012.09.014 23177202

37. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005;130(5):709–15. doi: 10.1111/j.1365-2141.2005.05674.x 16115126

38. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi: 10.1016/s0092-8674(00)81683-9 10647931

39. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi: 10.1038/nrc1877 16572188

40. Heine A, Brossart P, Wolf D. Ruxolitinib is a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood. 2013;122(23):3843–4. doi: 10.1182/blood-2013-10-531103 24288410

41. Jayaraman R, Pasha MK, Williams A, Goh KC, Ethirajulu K. Metabolism and disposition of pacritinib (SB1518), an orally active Janus Kinase 2 inhibitor in preclinical species and humans. Drug Metab Lett. 2015;9(1):28–47. 25600203

42. Younes A, Romaguera J, Fanale M, McLaughlin P, Hagemeister F, Copeland A, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 2012;30(33):4161–7. doi: 10.1200/JCO.2012.42.5223 22965964

43. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V. Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res. 2015;21(7):1537–42. doi: 10.1158/1078-0432.CCR-14-2034 25670221

44. Muranen T, Selfors LM, Hwang J, Gallegos LL, Coloff JL, Thoreen CC, et al. ERK and p38 MAPK activities determine sensitivity to PI3K/mTOR inhibition via regulation of MYC and YAP. Cancer Res. 2016;76(24):7168–80. doi: 10.1158/0008-5472.CAN-16-0155 27913436

45. Polk A, Lu Y, Wang T, Seymour E, Bailey NG, Singer JW, et al. Colony-Stimulating Factor-1 receptor is required for nurse-like cell survival in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(24):6118–28. doi: 10.1158/1078-0432.CCR-15-3099 27334834


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#