Sequential two-step chromatographic purification of infectious poliovirus using ceramic fluoroapatite and ceramic hydroxyapatite columns
Autoři:
Yae Kurosawa aff001; Shigehiro Sato aff002; Tsuneo Okuyama aff001; Masato Taoka aff004
Působiště autorů:
R&D Department, HOYA Technosurgical Corporation, Akishima-shi, Tokyo, Japan
aff001; Laboratory of Infectious Disease and Immunology, Department of Microbiology, Iwate Medical University, Shiwa, Iwate, Japan
aff002; Protein Technos Institute, Atsugi-shi, Kanagawa, Japan
aff003; Laboratory of Biophysics and Biochemistry, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222199
Souhrn
Infectious virus purification techniques are important for vaccine development and gene therapy applications. However, the standardized one-step purification technique using ceramic hydroxyapatite (CHAp) has proven unsuitable for poliovirus. Therefore, we designed a sequential two-step chromatographic technique for purification of the infectious Sabin type 2 vaccine strain of poliovirus from the cell culture supernatant. In the first step, we removed protein contaminants from the Sabin type 2 virus fraction by pH gradient elution on a ceramic fluoroapatite column. In the second step, we removed double-stranded DNA derived from host cells by diluting the virus fraction, directly loading it on a CHAp column, and purifying it using a phosphate gradient with 1 M sodium chloride. This process achieved removal rates of more than 99.95% and 99.99% for proteins and double-stranded DNA, respectively, and was highly reproducible and scalable. Furthermore, it is likely that it will be applicable to other virus species.
Klíčová slova:
Biology and life sciences – Organisms – Physical sciences – Chemistry – Research and analysis methods – Medicine and health sciences – Chemical compounds – Phosphates – Microbiology – Medical microbiology – Microbial pathogens – Pathology and laboratory medicine – Pathogens – Materials science – Materials – Infectious diseases – Viral pathogens – Viruses – RNA viruses – Flaviviruses – Infectious disease control – Vaccines – Orthomyxoviruses – Influenza viruses – Biological cultures – Cell cultures – Dengue virus – Separation processes – Elution – Ceramics – Sodium phosphate – Enteroviruses – Poliovirus
Zdroje
1. Food and Drug Administration. Guidance for Industry: Content and format of chemistry, manufacturing and controls information and establishment description information for a vaccine or related product. January 1999. https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines/ucm092272.pdf
2. Morenweiser R. Downstream processing of viral vectors and vaccines. Gene Ther. 2005;12: S103–S110. doi: 10.1038/sj.gt.3302624 16231042
3. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999; 6: 973–985. doi: 10.1038/sj.gt.3300938 10455399
4. Saha K, Lin YC, Wong PKY. A simple method for obtaining highly viable virus from culture supernatant. J Virol Methods. 1994;46: 349–352. doi: 10.1016/0166-0934(94)90005-1 8006113
5. Braas G, Searle PF, Slater NK, Lyddiatt A. Strategies for the isolation and purification of retroviral vectors for gene therapy. Bioseparation. 1996;6: 211–228. 9032984
6. Huyghe BG, Liu X, Sutjipto S, Sugarman BJ, Horn MT, Shepard HM, et al. Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography. Hum Gene Ther. 1995;6: 1403–1416. doi: 10.1089/hum.1995.6.11-1403 8573613
7. Blanche F, Cameron B, Barbot A, Ferrero L, Guillemin T, Guyot S, et al. An improved anion-exchange HPLC method for the detection and purification of adenoviral particles. Gene Ther. 2000;7: 1055–1062. doi: 10.1038/sj.gt.3301190 10871755
8. Kalbfuss B, Flockerzi D, Seidel-Morgenstern A, Reichl U. Size-exclusion chromatography as a linear transfer system: purification of human influenza virus as an example. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;873: 102–112. doi: 10.1016/j.jchromb.2008.08.002 18753016
9. Lee DS, Kim BM, Seol DW. Improved purification of recombinant adenoviral vector by metal affinity membrane chromatography. Biochem Biophys Res Commun. 2009;378: 640–644. doi: 10.1016/j.bbrc.2008.11.096 19056351
10. Kuiper M, Sanches RM, Walford JA, Slater NKH. Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol Bioeng. 2002;80: 445–453. doi: 10.1002/bit.10388 12325153
11. Smith GP, Gingrich TR. Hydroxyapatite chromatography of phage-display virions. Biotechniques. 2005;39: 879–883. doi: 10.2144/000112032 16382907
12. Jiang Z, Tong G, Cai B, Xu Y, Lou J. Purification and immunogenicity study of human papillomavirus 58 virus-like particles expressed in Pichia pastoris. Protein Expr Purif. 2011;80: 203–210. doi: 10.1016/j.pep.2011.07.009 21821128
13. O’Riordan CR, Lachapelle AL, Vincent KA, Wadsworth SC. Scaleable chromatographic purification process for recombinant adeno-associated virus (rAAV). J Gene Med. 2000;2: 444–454. doi: 10.1002/1521-2254(200011/12)2:6<444::AID-JGM132>3.0.CO;2-1 11199265
14. Kolmas J, Krukowski S, Laskus A, Jurkitewcz M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram Int. 2016;42: 2472–2487.
15. Hilbrig F, Freitag R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol J. 2012;7: 90–102. doi: 10.1002/biot.201100015 22147583
16. Kurosawa Y, Yamamoto A, Kurane I, Nakayama M. Development of a purification method for Japanese encephalitis virus particles using ceramic hydroxyapatite chromatography. Med Biol. 2012;156: 410–416.
17. Kurosawa Y, Saito M, Kobayashi S, Okuyama T. Purification of dengue virus particles by one-step ceramic hydroxyapatite chromatography. World J Vaccines. 2012;02: 155–160.
18. Kurosawa Y, Kurane I, Yamamoto A. Observation of Japanese encephalitis virus particles on ceramic hydroxyapatite by scanning electron microscopy. Med Biol. 2009;153: 607–610.
19. Saito M, Kurosawa Y, Okuyama T. Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns. PLoS One. 2013;8: e53893. doi: 10.1371/journal.pone.0053893 23326529
20. Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib Z, et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002;296: 356–359. doi: 10.1126/science.1068284 11896235
21. Shimizu H. Poliovirus vaccine. Uirusu 2012;62: 57–66. http://jsv.umin.jp/journal/v62-1pdf/virus62-1_57-66.pdf (in Japanese) 23189825
22. Verdijk P, Rots NY, Bakker WAM. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert Rev Vaccines. 2011;10: 635–644. doi: 10.1586/erv.11.51 21604984
23. Okada K, Miyazaki C, Kino Y, Ozaki T, Hirose M, Ueda K. Phase II and III clinical studies of diphtheria-tetanus-acellular pertussis vaccine containing inactivated polio vaccine derived from sabin strains (DTaP-sIPV). J Infect Dis. 2013;208: 275–283. doi: 10.1093/infdis/jit155 23568174
24. Racaniello VR. Picornaviridae: The viruses and their replication. In: Knipe DM, Howley PM, editors-in-chief. 5th Fields Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007. pp. 797–799.
25. CHT Ceramic Hydroxyapatite. Bio-Rad Laboratories, Inc. Bulletin 5667. https://www.bio-rad.com/webroot/web/pdf/psd/literature/Bulletin_5667.pdf
26. CFT Ceramic Fluoroapatite Media. Bio-Rad Laboratories, Inc. Bulletin 3111. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_3111.pdf
27. Ballew HC. Neutralization. In: Specter S, Hodinka RL, Young SA, editors. 3rd ed. Clinical virology manual. Washington, DC: ASM Press; 2000. pp. 131.
28. Sasse J, Gallagher SR. Staining proteins in gels. Curr Protoc Mol Biol. 2009;85: 10.6.1–10.6.27.
29. Kurosawa Y, Saito M, Yoshikawa D, Snyder M. Mammalian virus purification using ceramic hydroxyapatite. Bio-Rad Laboratories, Inc. 2014. Bulletin 6549. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6549.pdf
30. Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, et al. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol. 2006;80: 3259–3272. doi: 10.1128/JVI.80.7.3259-3272.2006 16537593
31. Gagnon P, Zhen J, Ng P, Aberin C, He J, Mekosh H, et al. Retention behavior of endotoxin, DNA and Protein A on CHT ceramic hydroxyapatite and CFT ceramic fluorapatite. BioProcess International World Conference, 19–21 September 2005, Boston, MA. http://www.validated.com/revalbio/pdffiles/IBC_2005.pdf
32. ICH Harmonised Tripartite Guideline. Specifications: Test procedures and acceptance criteria for biotechnological/biological products Q6B. 1999. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q6B/Step4/Q6B_Guideline.pdf
33. WHO. Annex 3 Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccines (inactivated). Replacement of Annex 2 of WHO Technical Report Series, No. 910. WHO Technical Report Series No. 993. 2015. https://www.who.int/biologicals/vaccines/Annex3_IPV_Recommendations_eng.pdf?ua=1
34. Poliovirus Vaccine Inactivated IPOL. Sanofi Pasteur. 2013. http://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM133479.pdf.
35. Nawa M. Stability of hemagglutinating activity of extracellular and intracellular forms of Japanese encephalitis virus exposed to acidic pH. Microbiol Immunol. 1996;40: 365–371. doi: 10.1111/j.1348-0421.1996.tb01081.x 8805101
36. Kapltt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994;8: 148–154. doi: 10.1038/ng1094-148 7842013
37. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15: 445–451. doi: 10.1038/nrg3742 24840552
38. Fountzilas C, Patal S, Mahalingam D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget. 2017;8: 102617–102639. doi: 10.18632/oncotarget.18309 29254276
39. U.S. National Library of Medicine. ClinicalTrials.gov; 2018 [cited 2018 Feb 19]. Database [Internet]. https://clinicaltrials.gov/ct2/results?cond=&term=oncolytic+virus&cntry=&state=&city=&dist=
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania