#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vibrational behavior of psyllids (Hemiptera: Psylloidea): Functional morphology and mechanisms


Autoři: Yi-Chang Liao aff001;  Zong-Ze Wu aff001;  Man-Miao Yang aff001
Působiště autorů: Department of Entomology, National Chung Hsing University, Taichung City, Taiwan aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0215196

Souhrn

Vibrational behavior of psyllids was first documented more than six decades ago. Over the years, workers have postulated as to what the exact signal producing mechanisms of psyllids might be but the exact mechanism has remained elusive. The aim of this study is to determine the specific signal producing structures and mechanisms of the psyllids. Here we examine six hypotheses of signal producing mechanisms from both previous and current studies that include: wingbeat, wing-wing friction, wing-thorax friction, wing-leg friction, leg-abdomen friction, and axillary sclerite-thorax friction. Through selective removal of possible signal producing structures and measuring wing beat frequency with high speed videos, six hypotheses were tested. Extensive experiments were implemented on the species Macrohomotoma gladiata Kuwayama, while other species belonging to different families, i.e., Trioza sozanica (Boselli), Mesohomotoma camphorae Kuwayama, Cacopsylla oluanpiensis (Yang), and Cacopsylla tobirae (Miyatake) were also examined to determine the potential prevalence of each signal producing mechanism within the Psylloidea. Further, scanning electron microscope (SEM) was used to examine possible rubbing structures. The result of high speed video recordings showed that wingbeat frequency did not match the dominant frequency of vibrational signals, resulting in the rejection of wingbeat hypothesis. As for the selective removal experiments, the axillary sclerite-thorax friction hypothesis is accepted and wing-thorax friction hypothesis is supported partially, while others are rejected. The SEM showed that the secondary axillary sclerite of the forewing bears many protuberances that would be suitable for stridulation. In conclusion, the signal producing mechanism of psyllids may involve two sets of morphological structures. The first is stridulation between the axillary sclerite of the forewing and the mesothorax. The second is stridulation between the axillary cord and anal area of the forewing.

Klíčová slova:

Biology and life sciences – Organisms – Eukaryota – Physical sciences – Engineering and technology – Animals – Invertebrates – Arthropoda – Insects – Anatomy – Medicine and health sciences – Zoology – Physics – Animal anatomy – Classical mechanics – Acoustics – Signal processing – Animal wings – Acoustic signals – Vibration – Abdomen – Thorax – Audio signal processing


Zdroje

1. Cocroft RB, Rodríguez RL. The behavioral ecology of insect vibrational communication. BioScience. 2005; 55: 323–334. doi: 10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2

2. Bell PD. Multimodal communication by the black-horned tree cricket, Oecanthus nigricornis (Walker) (Orthoptera: Gryllidae). Can J Zool. 1980; 58: 1861–1868. doi: 10.1139/z80-254

3. Hoy RR, Hoikkala A, Kaneshiro K. Hawaiian courtship songs: evolutionary innovation in communication signals of Drosophila. Science. 1988; 240:217–219. doi: 10.1126/science.3127882 3127882

4. Čokl A, Virant-Doberlet M, McDowell A. Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav. 1999; 58: 1277–1283. doi: 10.1006/anbe.1999.1272 10600150

5. Holman J. Possible sound producing structures present in some Macrosiphini (Homoptera: Aphididae). Eur J Entomol. 1994; 91:97–101.

6. Cocroft RB. Vibrational communication facilitates cooperative foraging in a phloem-feeding insect. Proc R Soc B Biol Sci. 2005; 272: 1023–1029. doi: 10.1098/rspb.2004.3041 16024360

7. Evans TA, Lai JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M. Termites assess wood size by using vibration signals. PNAS. 2005; 102: 3732–3737. doi: 10.1073/pnas.0408649102 15734796

8. Ulyshen MD, Mankin RW, Chen Y, Duan JJ, Poland TM, Bauer LS. Role of Emerald Ash Borer (Coleoptera: Buprestidae) larval vibrations in host-quality assessment by Tetrastichus planipennisi (Hymenoptera: Eulophidae). J Econ Entomol. 2011; 104: 81–86. doi: 10.1603/ec10283 21404843

9. Virant-Doberlet M, Cokl A. Vibrational communication in insects. Neotrop Entomol. 2004; 33: 121–134. doi: 10.1590/S1519-566X2004000200001

10. Kanmiya K, Sonobe R. Records of two citrus pest whiteflies in Japan with special reference to their mating sounds (Homoptera: Aleyrodidae). Appl Entomol Zool. 2002; 37: 487–495. doi: 10.1303/aez.2002.487

11. Kubota S. Rubbing behaviours in some aphids. Jpn J Entomol. 1985; 53: 595–603.

12. Percy DM, Taylor GS, Kennedy M. Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst. 2006; 20: 431–445. doi: 10.1071/is05057

13. Liao YC, Huang SS, Yang MM. Substrate-borne signals, specific recognition, and plant effects on the acoustics of two allied species of Trioza, with the description of a new species (Psylloidea: Triozidae). Ann Entomol Soc Am. 2016; 109: 906–917. doi: 10.1093/aesa/saw060

14. Liao YC, Yang MM. Acoustic communication of three closely related psyllid species: a case study in clarifying allied species using substrate-borne signals (Hemiptera: Psyllidae: Cacopsylla). Ann Entomol Soc Am. 2015;108: 902–911. doi: 10.1093/aesa/sav071

15. Liao YC, Yang MM. First evidence of vibrational communication in Homotomidae (Psylloidea) and comparison of substrate-borne signals of two allied species of the genus Macrohomotoma Kuwayama. J Insect Behav. 2017; 30: 567–581. doi: 10.1007/s10905-017-9640-2

16. Yang MM, Yang CT, Chao J. Reproductive isolation and taxonomy of two Taiwanese Paurocephala species (Homoptera: Psylloidea). Taiwan Mus Spec Publ. 1986; 6: 176–203.

17. Ossiannilsson F. Sound production in psyllids (Hem. Hom.). Opus Entomol. 1950; 15: 202.

18. Tuthill LD. On the Psyllidae of New Zealand (Homoptera). Pac Sci. 1952; 6: 83–125.

19. Heslop-Harrison G. XXVII.—The number and distribution of the spiracles of the adult psyllid. Ann Mag Nat Hist. 1952; 5: 248–260.

20. Heslop-Harrison G. Sound production in the Homoptera with special reference to sound producing mechanisms in the Psyllidae. J Nat Hist Ser 13. 1960; 3: 633–640. doi: 10.1080/00222936008651067

21. Taylor KL. The Australian genera Cardiaspina Crawford and Hyalinaspis Taylor, (Homoptera: Psyllidae). Aust J Zool 1962; 10: 307–348.

22. Taylor KL. A possible stridulatory organ in some Psylloidea (Homoptera). Aust J Entomol. 1985; 24: 77–80.

23. Tishechkin DY. On the structure of stridulatory organs in jumping plant lice (Homoptera: Psyllinea). Russian Entomol J. 2006; 15: 335–340.

24. Wenninger EJ, Hall DG, Mankin RW. Vibrational communication between the sexes in Diaphorina citri (Hemiptera: Psyllidae). Ann Entomol Soc Am. 2009; 102: 547–555.

25. Eben A, Mühlethaler R, Gross J, Hoch H. First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest Sci. 2015; 88, 87–95. doi: 10.1007/s10340-014-0588-0

26. Wenninger EJ, Hall DG. Daily timing of mating and age at reproductive maturity in Diaphorina citri (Hemiptera: Psyllidae). Fla Entomol. 2007; 90: 715–722. doi: 10.1653/0015-4040(2007)90[715:DTOMAA]2.0.CO;2

27. Mifsud D, Porcelli F. The psyllid Macrohomotoma gladiata Kuwayama, 1908 (Hemiptera: Psylloidea: Homotomidae): a Ficus pest recently introduced in the EPPO region. EPPO Bulletin. 2012; 42: 161–164. doi: 10.1111/j.1365-2338.2012.02544.x

28. Bella S, Rapisarda C. New findings in Italy of the recently introduced alien psyllid Macrohomotoma gladiata and additional distributional records of Acizzia jamatonica and Cacopsylla fulguralis (Hemiptera Psylloidea). Redia. 2014; 97:151–155.

29. Laborda R, Galán-Blesa J, Sánchez-Domingo A, Xamaní P, Estruch VD, Selfa J, et al. Preliminary study on the biology, natural enemies and chemical control of the invasive Macrohomotoma gladiata (Kuwayama) on urban Ficus microcarpa L. trees in Valencia (SE Spain). Urban For Urban Gree. 2015; 14: 123–128. http://dx.doi.org/10.1016/j.ufug.2014.12.007

30. Pedata PA, Burckhardt D, Mancini D. Severe infestations of the jumping plant-louse Macrohomotoma gladiata, a new species for Italy in urban Ficus plantations. B Insectol. 2012; 65: 95–98.

31. Rung A. A new pest of ficus in California: Macrohomotoma gladiata Kuwayama, 1908 (Hemiptera: Psylloidea: Homotomidae), new to North America. Check List. 2016; 12: 1–5. doi: 10.15560/12.3.1882

32. Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V. Inter-plant vibrational communication in a leafhopper insect. PLoS ONE. 2011: 6: e19692. doi: 10.1371/journal.pone.0019692 21573131

33. Ellis D. mp3read and mp3write [cited August 2010]. Available from: http://www.mathworks.com/matlabcentral/fileexchange/13852-mp3read-and-mp3write.

34. Vincent C. Vuvuzela sound denoising algorithm [cited August 2010]. Available from: http://www.mathworks.com/matlabcentral/fileexchange/27912-vuvuzela-sound-denoising-algorithm.

35. Zhivomirov H. Sound analysis with Matlab Implementation [cited August 2014]. Available from: http://www.mathworks.com/matlabcentral/fileexchange/38837-sound-analysis-with-matlab-implementation.

36. Unwin D, Corbet SA. Wingbeat frequency, temperature and body size in bees and flies. Physiol Entomol. 1984; 9: 115–121.

37. Williams CM, Galambos R. Oscilloscopic and stroboscopic analysis of the flight sounds of Drosophila. Biol Bull. 1950; 99: 300–307. doi: 10.2307/1538745 14791426

38. Webb JC, Sharp JL, Chambers DL, Benner JC. Acoustical properties of the flight activities of the caribbean fruit fly. J Exp Biol. 1976; 64: 761–772.

39. Arthur BJ, Emr KS, Wyttenbach RA, Hoy RR. Mosquito (Aedes aegypti) flight tones: frequency, harmonicity, spherical spreading, and phase relationships. J Acoust Soc Am. 2014; 135: 933–941. doi: 10.1121/1.4861233 25234901

40. Villet MH. The cicada genus Stagira Stål 1861 (Homoptera Tibicinidae): systematic revision. Trop Zool. 1997; 10: 347–392. doi: 10.1080/03946975.1997.10539347

41. Walker TJ, Carlysle TC. Stridulatory file teeth in crickets: Taxonomic and acoustic implications (Orthoptera: Gryllidae). Int J Insect Morphol Embryol. 1975; 4: 151–158. doi: 10.1016/0020-7322[75]90013–6

42. Cui Y, Xie Q, Hua J, Dang K, Zhou J, Liu X, et al. Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes. Syst Entomol. 2013; 38: 233–245. doi: 10.1111/j.1365-3113.2012.00660.x

43. Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, et al. Phylogenomics and the evolution of hemipteroid insects. PNAS. 2018; 115: 12775–12780. doi: 10.1073/pnas.1815820115 30478043


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#