Exploring the microbiota of upper respiratory tract during the development of pneumonia in a mouse model
Autoři:
Yoshitomo Morinaga aff001; Yuki Take aff001; Daisuke Sasaki aff001; Kenji Ota aff001; Norihito Kaku aff001; Naoki Uno aff001; Kei Sakamoto aff001; Kosuke Kosai aff001; Taiga Miyazaki aff002; Hiroo Hasegawa aff001; Koichi Izumikawa aff002; Hiroshi Mukae aff002; Katsunori Yanagihara aff001
Působiště autorů:
Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
aff001; Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
aff002; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222589
Souhrn
The alteration of the microbial community in the upper respiratory tract (URT) can contribute to the colonization and invasion of respiratory pathogens. However, there are no studies regarding whether the characteristics of the URT microbiota can be affected by infections in lower respiratory tract (LRT). To elucidate the microbial profiles of the URT during pneumonia, the oral, nasal, and lung microbiota was evaluated at the early phase in a murine pneumonia model by direct intratracheal inoculation of Klebsiella pneumoniae. The meta 16S rRNA sequencing of bronchoalveolar lavage fluid after K. pneumoniae inoculation presented alterations in the beta diversity of the microbes, but not in the alpha diversity. At this point, a significant increase in microbial alpha diversity was observed in the oral cavity, but not in the nasal cavity. The significant increase was observed in the family Carnobacteriaceae and family Enterococcaceae. These results suggest that characterizing the microbial community of the respiratory tract may not just involve a simple downstream relationship from the URT to the LRT. The health status of the LRT may influence the oral microbiota. Thus, evaluation of the oral microbiota may contribute towards monitoring lung health; the oral microbiota may act as a diagnostic marker of pneumonia.
Klíčová slova:
Bacterial pathogens – Respiratory infections – Mouse models – Microbiome – Respiratory physiology – Pneumonia – Streptococcal infections
Zdroje
1. Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nature reviews Microbiology. 2017;15(5):259–70. Epub 2017/03/21. doi: 10.1038/nrmicro.2017.14. 28316330.
2. Dickson RP, Huffnagle GB. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS pathogens. 2015;11(7):e1004923. Epub 2015/07/15. doi: 10.1371/journal.ppat.1004923. 26158874; PubMed Central PMCID: PMC4497592.
3. Cookson W, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nature reviews Microbiology. 2018;16(2):111–20. Epub 2017/10/25. doi: 10.1038/nrmicro.2017.122. 29062070.
4. Marik PE, Kaplan D. Aspiration pneumonia and dysphagia in the elderly. Chest. 2003;124(1):328–36. Epub 2003/07/11. doi: 10.1378/chest.124.1.328 12853541.
5. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet infectious diseases. 2004;4(3):144–54. Epub 2004/03/05. doi: 10.1016/S1473-3099(04)00938-7. 14998500.
6. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–6. Epub 2016/07/29. doi: 10.1038/nature18634. 27466123.
7. de Steenhuijsen Piters WA, Huijskens EG, Wyllie AL, Biesbroek G, van den Bergh MR, Veenhoven RH, et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. Isme j. 2016;10(1):97–108. Epub 2015/07/08. doi: 10.1038/ismej.2015.99. 26151645; PubMed Central PMCID: PMC4681870.
8. Lu HF, Li A, Zhang T, Ren ZG, He KX, Zhang H, et al. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection. Emerging microbes & infections. 2017;6(12):e112. Epub 2017/12/21. doi: 10.1038/emi.2017.101. 29259328; PubMed Central PMCID: PMC5750457.
9. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. American journal of respiratory and critical care medicine. 2011;184(8):957–63. Epub 2011/06/18. doi: 10.1164/rccm.201104-0655OC. 21680950; PubMed Central PMCID: PMC3208663.
10. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037. Epub 2015/03/05. doi: 10.1128/mBio.00037-15. 25736890; PubMed Central PMCID: PMC4358017.
11. Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N, Hasegawa H, et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2014. doi: 10.1111/1469-0691.12677. 24813594.
12. Abe K, Takahashi A, Fujita M, Imaizumi H, Hayashi M, Okai K, et al. Dysbiosis of oral microbiota and its association with salivary immunological biomarkers in autoimmune liver disease. PloS one. 2018;13(7):e0198757. Epub 2018/07/04. doi: 10.1371/journal.pone.0198757. 29969462; PubMed Central PMCID: PMC6029758.
13. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA research: an international journal for rapid publication of reports on genes and genomes. 2014;21(1):15–25. Epub 2013/09/10. doi: 10.1093/dnares/dst037. 24013298; PubMed Central PMCID: PMC3925391.
14. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature medicine. 2015;21(8):895–905. Epub 2015/07/28. doi: 10.1038/nm.3914. 26214836.
15. Boaden E, Lyons M, Singhrao SK, Dickinson H, Leathley M, Lightbody CE, et al. Oral flora in acute stroke patients: A prospective exploratory observational study. Gerodontology. 2017;34(3):343–56. Epub 2017/05/26. doi: 10.1111/ger.12271. 28543778.
16. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nature microbiology. 2016;1:16031. Epub 2016/08/31. doi: 10.1038/nmicrobiol.2016.31. 27572644; PubMed Central PMCID: PMC5010013.
17. Kageyama S, Takeshita T, Furuta M, Tomioka M, Asakawa M, Suma S, et al. Relationships of Variations in the Tongue Microbiota and Pneumonia Mortality in Nursing Home Residents. The journals of gerontology Series A, Biological sciences and medical sciences. 2018;73(8):1097–102. Epub 2017/10/21. doi: 10.1093/gerona/glx205. 29053769.
18. Asakawa M, Takeshita T, Furuta M, Kageyama S, Takeuchi K, Hata J, et al. Tongue Microbiota and Oral Health Status in Community-Dwelling Elderly Adults. mSphere. 2018;3(4). Epub 2018/08/17. doi: 10.1128/mSphere.00332-18. 30111628; PubMed Central PMCID: PMC6094060.
19. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio. 2017;8(1). Epub 2017/02/16. doi: 10.1128/mBio.02287-16. 28196961; PubMed Central PMCID: PMC5312084.
20. Whelan FJ, Verschoor CP, Stearns JC, Rossi L, Luinstra K, Loeb M, et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Annals of the American Thoracic Society. 2014;11(4):513–21. Epub 2014/03/08. doi: 10.1513/AnnalsATS.201310-351OC. 24601676.
21. Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. Journal of dental research. 2013;92(6):485–91. Epub 2013/04/30. doi: 10.1177/0022034513487559. 23625375; PubMed Central PMCID: PMC3654760.
22. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nature reviews Microbiology. 2017;15(1):55–63. Epub 2016/11/01. doi: 10.1038/nrmicro.2016.142. 27694885.
23. Akata K, Yatera K, Yamasaki K, Kawanami T, Naito K, Noguchi S, et al. The significance of oral streptococci in patients with pneumonia with risk factors for aspiration: the bacterial floral analysis of 16S ribosomal RNA gene using bronchoalveolar lavage fluid. BMC Pulm Med. 2016;16(1):79. Epub 2016/05/14. doi: 10.1186/s12890-016-0235-z. 27169775; PubMed Central PMCID: PMC4864928.
24. Ruoff KL. Nutritionally variant streptococci. Clinical microbiology reviews. 1991;4(2):184–90. Epub 1991/04/01. doi: 10.1128/cmr.4.2.184 2070344; PubMed Central PMCID: PMC358190.
25. Laclaire L, Facklam R. Antimicrobial susceptibility and clinical sources of Dolosigranulum pigrum cultures. Antimicrobial agents and chemotherapy. 2000;44(7):2001–3. Epub 2000/06/20. doi: 10.1128/aac.44.7.2001-2003.2000 10858372; PubMed Central PMCID: PMC90003.
26. Alberti MO, Hindler JA, Humphries RM. Antimicrobial Susceptibilities of Abiotrophia defectiva, Granulicatella adiacens, and Granulicatella elegans. Antimicrobial agents and chemotherapy. 2015;60(3):1411–20. Epub 2015/12/17. doi: 10.1128/AAC.02645-15. 26666926; PubMed Central PMCID: PMC4776019.
27. Sedgley CM, Lennan SL, Clewell DB. Prevalence, phenotype and genotype of oral enterococci. Oral microbiology and immunology. 2004;19(2):95–101. Epub 2004/02/12. 14871348.
28. Kato H, Yoshida A, Ansai T, Watari H, Notomi T, Takehara T. Loop-mediated isothermal amplification method for the rapid detection of Enterococcus faecalis in infected root canals. Oral microbiology and immunology. 2007;22(2):131–5. Epub 2007/02/22. doi: 10.1111/j.1399-302X.2007.00328.x. 17311637.
29. Rocas IN, Siqueira JF Jr., Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. Journal of endodontics. 2004;30(5):315–20. Epub 2004/04/27. doi: 10.1097/00004770-200405000-00004. 15107642.
30. Cho SH, Oh SY, Zhu Z, Lee J, Lane AP. Spontaneous eosinophilic nasal inflammation in a genetically-mutant mouse: comparative study with an allergic inflammation model. PloS one. 2012;7(4):e35114. doi: 10.1371/journal.pone.0035114. 22509389; PubMed Central PMCID: PMC3324406.
31. Abusleme L, Hong BY, Hoare A, Konkel JE, Diaz PI, Moutsopoulos NM. Oral Microbiome Characterization in Murine Models. Bio-protocol. 2017;7(24). Epub 2018/01/16. doi: 10.21769/BioProtoc.2655. 29333479; PubMed Central PMCID: PMC5760993.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania