#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Decontamination of aerosolised bacteria from a pig farm environment using a pH neutral electrochemically activated solution (Ecas4 anolyte)


Autoři: Sangay Tenzin aff001;  Abiodun David Ogunniyi aff001;  Manouchehr Khazandi aff001;  Sergio Ferro aff002;  Jonathon Bartsch aff003;  Simon Crabb aff002;  Sam Abraham aff004;  Permal Deo aff005;  Darren J. Trott aff001
Působiště autorů: Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA, Australia aff001;  Ecas4 Australia Pty. Ltd., Mile End South SA, Australia aff002;  Dr Barry Lloyd Pty. Ltd., Gawler SA, Australia aff003;  School of Veterinary and Life Sciences, Murdoch University, Murdoch WA, Australia aff004;  School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Playford P1-25, Adelaide SA, Australia aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222765

Souhrn

An electrochemically activated solution (ECAS), generated by electrolysis of a dilute sodium chloride solution in a four-chamber electrolytic cell (Ecas4), was tested as a sanitising aerosol in eliminating bacteria from the environment of a weaning room vacated 24-48h earlier, at a continuous flow pig farm. An ultrasonic humidifier was used to fill the environment with a fog (droplets with diameters of 1–5 μm) containing 0.25 ppm of hypochlorous acid. The weaning room was fogged for 3 min at 30 min intervals during five hours of aerosol disinfection. An innovative sample treatment with propidium monoazide dye in conjunction with cyclonic air sampling was optimised and adapted for discerning live/dead bacteria in subsequent molecular quantification steps. Without fogging, total bacterial load ranged from 5.06 ± 0.04 to 5.75 ± 0.04 Log10 CFU/m3. After the first hour of fogging, a 78% total bacterial reduction was observed, which further increased to > 97% after the second hour, > 99.4% after the third and 99.8% after the fourth hour, finally resulting in a 99.99% reduction from the farm environment over five hours. Unlike the current formaldehyde spray disinfection protocol, which requires a long empty period because of its hazardous properties, this economically viable and environmentally friendly disinfection protocol may significantly lower downtime. Moreover, ECAS fogging can be easily adapted to a variety of applications, including the elimination of pathogens from livestock farm air environment for disease prevention, as well as decontamination after disease outbreaks.

Klíčová slova:

DNA – Methicillin-resistant Staphylococcus aureus – Veterinary diseases – Livestock – Antibiotic resistance – Disinfection – Swine – Fog


Zdroje

1. Fablet C, Dorenlor V, Eono F, Eveno E, Jolly JP, Portier F, et al. Noninfectious factors associated with pneumonia and pleuritis in slaughtered pigs from 143 farrow-to-finish pig farms. Prev Vet Med. 2012 May 1;104(3–4):271–280. doi: 10.1016/j.prevetmed.2011.11.012 22196500

2. Gardner IA, Willeberg P, Mousing J. Empirical and theoretical evidence for herd size as a risk factor for swine diseases. Anim Health Res Rev. 2002 Jun; 3(1): 43–55. 12400869

3. Jirawattanapong P, Stockhofe-Zurwieden N, van Leengoed L, Wisselink H, Raymakers R, Cruijsen T, et al. Pleuritis in slaughter pigs: relations between lung lesions and bacteriology in 10 herds with high pleuritis. Res Vet Sci. 2010 Feb 1;88(1):11–5. doi: 10.1016/j.rvsc.2009.06.007 19836811

4. Michiels A, Piepers S, Ulens T, Van Ransbeeck N, Sacristán RD, Sierens A, et al. Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Prev Vet Med. 2015 Sep 1;121(1–2):99–107. doi: 10.1016/j.prevetmed.2015.06.011 26148844

5. Stärk K.D. Epidemiological investigation of the influence of environmental risk factors on respiratory diseases in swine—a literature review. Vet J. 2000 Jan 1;159(1):37–56. doi: 10.1053/tvjl.1999.0421 10640410

6. European Platform for the Responsible Use of Medicines in Animals, [cited 2017 Dec 17]. Document on veterinary medicinal product terminology. Available from: http://www.epruma.eu/.

7. Fotheringham VJ. Disinfection of livestock production premises. Rev Sci Tech Title(s). 1995 Mar 1; 14: 191–205.

8. Meakin NS, Bowman C, Lewis MR, Dancer SJ. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home. J Hosp Infect. 2012 Feb 1; 80(2): 122–7. doi: 10.1016/j.jhin.2011.10.015 22196853

9. Loughlin MF, Jones MV, Lambert PA. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother. 2002 Apr 1; 49(4): 631–9. doi: 10.1093/jac/49.4.631 11909837

10. Nicklas W, Böhm KH, Richter B. Studies on the corrosive action of some disinfectants suitable for aerosol-disinfection (author's transl). Zentralbl Bakteriol Mikrobiol Hyg A. 1981; 173(5): 374–81.

11. Chapman JS. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegradation. 2003 Jun 1; 51(4): 271–6.

12. Prilutsky V, Bakhir V, 1997. Electrochemically activated water: anomalous properties, mechanism of biological action. VNIII of Med Eng. 232 pp.

13. Tanaka N, Fujisawa T, Daimon T, Fujiwara K, Tanaka N, Yamamoto M, et al. The effect of electrolyzed strong acid aqueous solution on hemodialysis equipment. J Artif Organs. 1999 Dec; 23(12): 1055–62.

14. Wang H, Duan D, Wu Z, Xue S, Xu X, Zhou G. Primary concerns regarding the application of electrolyzed water in the meat industry. J. Food Saf. 2019 Jan 1; 95: 50–6.

15. Hao J, Liu H, Liu RU, Dalai W, Zhao R, Chen T, et al. Efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh‐cut cilantro. J. Food Saf. 2011 Feb 1; 31(1): 28–34.

16. Koide S, Takeda JI, Shi J, Shono H, Atungulu GG. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control. 2009 Mar 1; 20(3): 294–7.

17. Rahman SM, Ding T, Oh DH. Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control. 2010 Oct 1; 21(10): 1383–7.

18. Khazandi M, Deo P, Ferro S, Venter H, Pi H, Crabb S, et al. Efficacy evaluation of a new water sanitizer for increasing the shelf life of Southern Australian King George Whiting and Tasmanian Atlantic Salmon fillets. Food Microbiol. 2017 Dec 1; 68: 51–60. doi: 10.1016/j.fm.2017.06.008 28800825

19. Ozer NP, Demirci A. Electrolyzed oxidizing water treatment for decontamination of raw salmon inoculated with Escherichia coli O157: H7 and Listeria monocytogenes Scott A and response surface modeling. J Food Eng. 2006 Feb 1; 72(3): 234–41.

20. Dalla Paola LMD, Brocco E, Senesi A. Feature: Super-Oxidized Solution (SOS) Therapy for Infected Diabetic Foot Ulcers. Wounds. 2006 Sept; 18(9):262–270.

21. Ichihara T, Fujii G, Eda T, Sasaki M, Ueda Y. The efficacy of function water (electrolyzed strong acid solution) on open heart surgery; postoperative mediastinitis due to methicillin-resistant Staphylococcus aureus. Kyobu geka. Jpn J Thorac Surg. 2004 Nov; 57(12): 1110–2.

22. Ohno H, Higashidate M, Yokosuka T. Mediastinal irrigation with superoxidized water after open-heart surgery: the safety and pitfalls of cardiovascular surgical application. Surg. Today. 2000 Nov 1; 30(11): 1055–6. doi: 10.1007/s005950070035 11110409

23. Migliarina F, Ferro S. A modern approach to disinfection, as old as the evolution of vertebrates. In Healthcare 2014 Dec 19 (Vol. 2, No. 4, pp. 516–526). Multidisciplinary Digital Publishing Institute. doi: 10.3390/healthcare2040516 27429291

24. Institute of Healthcare Engineering, Australia. The Aus Hosp Eng. [cited 2017 May 02] Available from: https://issuu.com/adbourne/docs/hospital_summer_2016_issuu_opt/60

25. Sahibzada S, Abraham S, Coombs GW, Pang S, Hernández-Jover M, Jordan D, et al. Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia. Sci Rep. 2017 Jul 13; 7(1): 5273. doi: 10.1038/s41598-017-04789-0 28706213

26. CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 5th ed. CLSI standard VET01. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

27. Schaller A, Djordjevic SP, Eamens GJ, Forbes WA, Kuhn R, Kuhnert P, et al. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA. Vet Microbiol. 2001 Mar 2; 79(1): 47–62. doi: 10.1016/s0378-1135(00)00345-x 11230928

28. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol. 2002 Jan 1; 148(1): 257–66.

29. Thorn RM, Lee SW, Robinson GM, Greenman J, Reynolds DM. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 2012 May 1; 31(5):641–53.

30. Zinkevich V, Beech IB, Tapper R, Bogdarina I. The effect of super-oxidized water on Escherichia coli. J Hosp Infect. 2000 Oct 1; 46(2): 153–6. doi: 10.1053/jhin.2000.0819 11049710

31. Marenda M, Markham P, Watt A, 2014. [cited June 16, 2017]. Real-time detection of airborne pathogens in the piggery. Available from: http://porkcrc.com.au/.

32. El Metwaly Ahmed MF, Schulz J, Hartung J. Air samplings in a Campylobacter jejuni positive laying hen flock. Ann Agric Environ Med. 2013;20(1).

33. Bilić V, Habrun B, Barač I, Humski A. Distribution of airborne bacteria in swine housing facilities and their immediate environment. Arh Hig Rada Toksiko. 2000 Nov 6; 51(2): 199–205.

34. Popescu S, Borda C, Diugan EA, Oros D. Microbial air contamination in indoor and outdoor environment of pig farms. J Anim Sci Biotechnol. 2014 May 31; 47(1):182–7.

35. Pork CRC Australia. Investigating the use of aerosol disinfection during the weaner period on APP prevalence in fogged grower/finisher pigs. [cited 2016 May 23] Available from: http://porkcrc.com.au/

36. Lee S, Bae S. Molecular viability testing of viable but non‐culturable bacteria induced by antibiotic exposure. Microb Biotechnol. 2018 Nov;11(6):1008–16. doi: 10.1111/1751-7915.13039 29243404

37. Ferro S, Amorico T, Deo P. Role of food sanitising treatments in inducing the ‘viable but nonculturable’state of microorganisms. Food Control. 2018 Sep 1; 91:321–9.

38. Safe Work Australia. 2018. Workplace exposure standards for airborne contaminants. [cited 2018 March 15]. Available from: https://www.safeworkaustralia.gov.au/

39. Donham KJ. Association of environmental air contaminants with disease and productivity in swine. Am J Vet Res. 1991 Oct;52(10):1723–30. 1767997

40. Stärk KD, Pfeiffer DU, Morris RS. Risk factors for respiratory diseases in New Zealand pig herds. N Z Vet J. 1998 Feb 1;46(1):3–10. doi: 10.1080/00480169.1998.36043 16032003


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#