Understanding the intricacy of canid social systems: Structure and temporal stability of red fox (Vulpes vulpes) groups
Autoři:
Jo Dorning aff001; Stephen Harris aff001
Působiště autorů:
School of Biological Sciences, University of Bristol, Bristol, England, United Kingdom
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0220792
Souhrn
Red foxes have a highly flexible social system. Despite numerous studies worldwide, our understanding of the pattern and stability of fox social relationships remains limited. We applied social network analysis to camera trap data collected at high-quality foraging patches to examine the social structure of a population of urban red foxes. Foxes encountered a conspecific on 13% of patch visits, and had significant preferred and avoided companionships in all seasons. They also associated in communities that matched territorial space use, confirming that territories can be analysed separately to increase power without excluding too many social partners. Foxes maintained stable, long-term relationships with other territory residents, but the average longevity of relationships varied seasonally, suggesting that social connectivity, particularly between foxes from different social groups, is influenced by their annual life cycle. The probability of re-association after a given time lag was highest in spring and summer, during cub birth and rearing, and lowest in the winter mating season, when mean relationship duration was shorter. 33% of fox relationships lasted for four consecutive seasons and were probably between territory residents. 14% lasted for around 20 days and were probably between residents and visitors from adjacent territories. The majority (53%) lasted less than one day, particularly during dispersal and mating, and were probably between foxes from non-adjacent social groups. Social structure varied between groups; in one group the death of the dominant male caused significant social disruption for two seasons. This is the first application of social network analysis to multiple red fox social groups. However, our analyses were based on interactions at high quality food patches; social connections may differ when foxes are resting, travelling and foraging elsewhere in their territory. Our results will inform management practices, particularly for disease spread and population control.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Physical sciences – Psychology – Animals – Social sciences – Sociology – Computer and information sciences – Network analysis – Mathematics – Vertebrates – Amniotes – Mammals – Zoology – Behavior – Earth sciences – Animal behavior – Seasons – Algebra – Linear algebra – Foxes – Foraging – Spring – Social networks – Social systems – Discrete mathematics – Combinatorics – Permutation – Eigenvectors
Zdroje
1. Ekernas LS, Cords M. Social and environmental factors influencing natal dispersal in blue monkeys, Cercopithecus mitis stuhlmanni. Anim Behav. 2007;73: 1009–1020. https://doi.org/10.1016/j.anbehav.2006.11.007.
2. Blumstein DT, Wey TW, Tang K. A test of the social cohesion hypothesis: interactive female marmots remain at home. Proc R Soc B. 2009;276: 3007–3012. doi: 10.1098/rspb.2009.0703 19493901
3. Cameron EZ, Setsaas TH, Linklater WL. Social bonds between unrelated females increase reproductive success in feral horses. Proc Nat Acad Sci. 2009;106: 13850–13853. doi: 10.1073/pnas.0900639106 19667179
4. Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 2010;7(7): e1000316. doi: 10.1371/journal.pmed.1000316 20668659
5. Schülke O, Bhagavatula J, Vigilant L, Ostner J. Social bonds enhance reproductive success in male macaques. Current Biol. 2010;20: 2207–2210. https://doi.org/10.1016/j.cub.2010.10.058.
6. Wey TW, Blumstein DT. Social attributes and associated performance measures in marmots: bigger male bullies and weakly affiliating females have higher annual reproductive success. Behav Ecol Sociobiol. 2012;66: 1075–1085. https://doi.org/10.1007/s00265-012-1358-8.
7. Wiszniewski J, Corrigan S, Beheregaray LB, Möller LM. Male reproductive success increases with alliance size in Indo-Pacific bottlenose dolphins (Tursiops aduncus). J Anim Ecol. 2012;81: 423–431. doi: 10.1111/j.1365-2656.2011.01910.x 21981240
8. Hoogland JL. Prairie dogs disperse when all close kin have disappeared. Science. 2013;339: 1205–1207. doi: 10.1126/science.1231689 23471407
9. Borg BL, Brainerd SM, Meier TJ, Prugh LR. Impacts of breeder loss on social structure, reproduction and population growth in a social canid. J Anim Ecol. 2015;84: 177–187. doi: 10.1111/1365-2656.12256 25041127
10. Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M. The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol Evol. 2014;29: 326–335. doi: 10.1016/j.tree.2014.04.002 24792356
11. Podgórski T, Lusseau D, Scandura M, Sönnichsen L, Jędrzejewska B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One. 2014;9(6): e99875. doi: 10.1371/journal.pone.0099875 24919178
12. Vander Wal E, Festa-Bianchet M, Réale D, Coltman DW, Pelletier F. Sex-based differences in the adaptive value of social behavior contrasted against morphology and environment. Ecology. 2015;96: 631–641. https://doi.org/10.1890/14-1320.1. 26236860
13. Farine DR, Whitehead H. Constructing, conducting and interpreting animal social network analysis. J Anim Ecol. 2015;84: 1144–1163. doi: 10.1111/1365-2656.12418 26172345
14. Whitehead H. Analyzing animal societies: quantitative methods for vertebrate social analysis. Chicago: University of Chicago Press; 2008.
15. Pepper JW, Mitani JC, Watts DP. General gregariousness and specific social preferences among wild chimpanzees. Int J Primat. 1999;20: 613–632. https://doi.org/10.1023/A:1020760616641.
16. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Nat Acad Sci. 2002;99: 7821–7826. doi: 10.1073/pnas.122653799 12060727
17. Dunbar RIM. The social brain hypothesis. Evol Anthropol. 1998;6: 178–190. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8.
18. Wolf JBW, Mawdsley D, Trillmich F, James R. Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim Behav. 2007;74: 1293–1302. https://doi.org/10.1016/j.anbehav.2007.02.024.
19. Wiszniewski J, Allen SJ, Möller LM. Social cohesion in a hierarchically structured embayment population of Indo-Pacific bottlenose dolphins. Anim Behav. 2009;77: 1449–1457. https://doi.org/10.1016/j.anbehav.2009.02.025.
20. Best EC, Dwyer RG, Seddon JM, Goldizen AW. Associations are more strongly correlated with space use than kinship in female eastern grey kangaroos. Anim Behav. 2014;89: 1–10. https://doi.org/10.1016/j.anbehav.2013.12.011.
21. Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D, de Silva S, et al. The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol. 2014;25: 242–255. https://doi.org/10.1093/beheco/art047.
22. Verdolin JL, Traud AL, Dunn RR. Key players and hierarchical organization of prairie dog social networks. Ecol Complex. 2014;19: 140–147. https://doi.org/10.1016/j.ecocom.2014.06.003.
23. Whitehead H, Dufault S. Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv Study Behav. 1999;28: 33–74.
24. Hamede RK, Bashford J, McCallum H, Jones M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol Lett. 2009;12: 1147–1157. doi: 10.1111/j.1461-0248.2009.01370.x 19694783
25. Patriquin KJ, Leonard ML, Broders HG, Garroway CJ. Do social networks of female northern long-eared bats vary with reproductive period and age? Behav Ecol Sociobiol. 2010;64: 899–913. https://doi.org/10.1007/s00265-010-0905-4.
26. Brent LJN, MacLarnon A, Platt ML, Semple S. Seasonal changes in the structure of rhesus macaque social networks. Behav Ecol Sociobiol. 2013;67: 349–359. doi: 10.1007/s00265-012-1455-8 23565026
27. Wey TW, Burger JR, Ebensperger LA, Hayes LD. Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). Anim Behav. 2013;85: 1407–1414. doi: 10.1016/j.anbehav.2013.03.035 24511149
28. Reynolds JJH, Hirsch BT, Gehrt SD, Craft ME. Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination. J Anim Ecol. 2015;84: 1720–1731. doi: 10.1111/1365-2656.12422 26172427
29. Smith JE, Kolowski JM, Graham KE, Dawes SE, Holekamp KE. Social and ecological determinants of fission-fusion dynamics in the spotted hyaena. Anim Behav. 2008;76: 619–636. https://doi.org/10.1016/j.anbehav.2008.05.001.
30. Henzi SP, Lusseau D, Weingrill T, van Schaik CP, Barrett L. Cyclicity in the structure of female baboon social networks. Behavl Ecol Sociobiol. 2009;63: 1015–1021. https://doi.org/10.1007/s00265-009-0720-y.
31. Foster EA, Franks DW, Morrell LJ, Balcomb KC, Parsons KM, van Ginneken A, et al. Social network correlates of food availability in an endangered population of killer whales, Orcinus orca. Anim Behav. 2012;83: 731–736. https://doi.org/10.1016/j.anbehav.2011.12.021.
32. Duboscq J, Romano V, Sueur C, MacIntosh AJJ. Network centrality and seasonality interact to predict lice load in a social primate. Sci Rep. 2016;6: 22095. doi: 10.1038/srep22095 26915589
33. de Silva S, Ranjeewa ADG, Kryazhimskiy S. The dynamics of social networks among female Asian elephants. BMC Ecol. 2011;11: 17. doi: 10.1186/1472-6785-11-17 21794147
34. Webster MM, Atton N, Hoppitt WJE, Laland KN. Environmental complexity influences association network structure and network-based diffusion of foraging information in fish shoals. Am Nat. 2013;181: 235–244. doi: 10.1086/668825 23348777
35. Webber QMR, Brigham RM, Park AD, Gillam EH, O’Shea TJ, Willis CKR. Social network characteristics and predicted pathogen transmission in summer colonies of female big brown bats (Eptesicus fuscus). Behav Ecol Sociobiol. 2016;70: 701–712. https://doi.org/10.1007/s00265-016-2093-3.
36. Whitehead H. Investigating structure and temporal scale in social organizations using identified individuals. Behav Ecol. 1995;6: 199–208. https://doi.org/10.1093/beheco/6.2.199.
37. Wallach AD, Johnson CN, Ritchie EG, O’Neill AJ. Predator control promotes invasive dominated ecological states. Ecol Lett. 2010;13: 1008–1018. doi: 10.1111/j.1461-0248.2010.01492.x 20545732
38. Shannon G, Slotow R, Durant SM, Sayialel KN, Poole J, Moss C, et al. Effects of social disruption in elephants persist decades after culling. Front Zool. 2013;10: 62. doi: 10.1186/1742-9994-10-62 24152378
39. Spencer PBS, Hampton JO, Pacioni C, Kennedy MS, Saalfeld K, Rose K, et al. Genetic relationships within social groups influence the application of the Judas technique: a case study with wild dromedary camels. J Wildl Manage. 2015;79: 102–111. https://doi.org/10.1002/jwmg.807.
40. Doherty TS, Ritchie EG. Stop jumping the gun: a call for evidence-based invasive predator management. Conserv Lett. 2016;10: 15–22. https://doi.org/10.1111/conl.12251.
41. Drewe JA. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc R Soc B. 2010;277: 633–642. doi: 10.1098/rspb.2009.1775 19889705
42. Lusseau D, Newman MEJ. Identifying the role that animals play in their social networks. Proc R Soc B. 2004;271: S477–S481. doi: 10.1098/rsbl.2004.0225 15801609
43. Flack JC, Girvan M, de Waal FBM, Krakauer DC. Policing stabilizes construction of social niches in primates. Nature, 2006;439: 426–429. doi: 10.1038/nature04326 16437106
44. Bret C, Sueur C, Ngoubangoye B, Verrier D, Deneubourg J-L, Petit O. Social structure of a semi-free ranging group of mandrills (Mandrillus sphinx): a social network analysis. PLoS One. 2013;8(12): e83015. doi: 10.1371/journal.pone.0083015 24340074
45. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science. 2008;322: 225–230. doi: 10.1126/science.1165115 18845749
46. Cavallini P. Variation in the social system of the red fox. Ethol Ecol Evol. 1996;8: 323–342. https://doi.org/10.1080/08927014.1996.9522906.
47. Baker PJ, Harris S. Red foxes: the behavioural ecology of red foxes in urban Bristol. In: Macdonald DW, Sillero-Zubiri C, editors. Biology and conservation of wild canids. Oxford: Oxford University Press; 2004. pp. 207–216.
48. Baker PJ, Funk SM, Bruford MW, Harris S. Polygynandry in a red fox population: implications for the evolution of group living in canids? Behav Ecol. 2004;15: 766–778. https://doi.org/10.1093/beheco/arh077.
49. Iossa G, Soulsbury CD, Baker PJ, Edwards KJ, Harris S. Behavioral changes associated with a population density decline in the facultatively social red fox. Behav Ecol. 2009;20: 385–395. https://doi.org/10.1093/beheco/arn149.
50. Dorning J, Harris S. Quantifying group size in facultatively social species: what, if anything, is a fox social group? J Zool. 2019;308: 37–46.
51. Poulle ML, Artois M, Roeder JJ. Dynamics of spatial relationships among members of a fox group (Vulpes vulpes: Mammalia: Carnivora). J Zool. 1994;233: 93–106. https://doi.org/10.1111/j.1469-7998.1994.tb05264.x.
52. White PCL, Harris S. Encounters between red foxes (Vulpes vulpes): implications for territory maintenance, social cohesion and dispersal. J Anim Ecol. 1994;63: 315–327. doi: 10.2307/5550
53. Harris S, Smith GC. Demography of two urban fox (Vulpes vulpes) populations. J Appl Ecol. 1987;24: 75–86. doi: 10.2307/2403788
54. Harris S, Trewhella WJ. An analysis of some of the factors affecting dispersal in an urban fox (Vulpes vulpes) population. J Appl Ecol. 1988;25: 409–422. doi: 10.2307/2403833
55. Saunders G, White PCL, Harris S, Rayner JMV. Urban foxes (Vulpes vulpes): food acquisition, time and energy budgeting of a generalized predator. Symp Zool Soc Lond. 1993;65: 215–234.
56. Baker PJ, Newman T, Harris S. Bristol’s foxes—40 years of change. British Wildl. 2001;12: 411–417.
57. Soulsbury CD, Iossa G, Baker PJ, White PCL, Harris S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J Mammal. 2011;92: 190–199. doi: 10.1644/09-MAMM-A-187.1
58. Lloyd HG. The red fox. London: Batsford; 1980.
59. White PCL, Saunders G, Harris S. Spatio-temporal patterns of home range use by foxes (Vulpes vulpes) in urban environments. J Anim Ecol. 1996;65: 121–125. doi: 10.2307/5705
60. Baker PJ, Funk SM, Harris S, White PCL. Flexible spatial organization of urban foxes, Vulpes vulpes, before and during an outbreak of sarcoptic mange. Anim Behav. 2000; 59: 127–146. doi: 10.1006/anbe.1999.1285 10640375
61. Dorning J, Harris S. Dominance, gender, and season influence food patch use in a group-living, solitary foraging canid. Behav Ecol. 2017;28: 1302–1313. doi: 10.1093/beheco/arx092
62. Harris S. An estimation of the number of foxes (Vulpes vulpes) in the city of Bristol, and some possible factors affecting their distribution. J Appl Ecol. 1981;18: 455–465. https://www.jstor.org/stable/2402406.
63. Soulsbury CD, Iossa G, Baker PJ, Cole NC, Funk SM, Harris S. The impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. Mammal Rev. 2007;37: 278–296. https://doi.org/10.1111/j.1365-2907.2007.00100.x.
64. Whiteside H. The role of subordinate reproduction on the promotion of group living in the red fox (Vulpes vulpes). Ph.D. Thesis, The University of Bristol. 2012.
65. Dorning J, Harris S. The challenges of recognising individuals of species with few distinguishing features: Identifying red foxes Vulpes vulpes from camera trap photos. PLoS One. 2019;14(5): e0216531. doi: 10.1371/journal.pone.0216531 31071143
66. Perkins SE, Cagnacci F, Stradiotto A, Arnoldi D, Hudson PJ. Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics. J Anim Ecol. 2009;78: 1015–1022. doi: 10.1111/j.1365-2656.2009.01557.x 19486206
67. Castles M, Heinsohn R, Marshall HH, Lee AEG, Cowlishaw G, Carter AJ. Social networks created with different techniques are not comparable. Anim Behav. 2014;96: 59–67. https://doi.org/10.1016/j.anbehav.2014.07.023.
68. Whitehead H. SOCPROG programs: analysing animal social structures. Behav Ecol Sociobiol. 2009;63: 765–778. https://doi.org/10.1007/s00265-008-0697-y.
69. Bejder L, Fletcher D, Bräger S. A method for testing association patterns of social animals. Anim Behav. 1998;56: 719–725. doi: 10.1006/anbe.1998.0802 9784222
70. Cairns SJ, Schwager SJ. A comparison of association indices. Anim Behav. 1987;35: 1454–1469. https://doi.org/10.1016/S0003-3472(87)80018-0.
71. Ginsberg JR, Young TP. Measuring association between individuals or groups in behavioural studies. Anim Behav. 1992;44: 377–379.
72. Whitehead H. Precision and power in the analysis of social structure using associations. Anim Behav. 2008;75: 1093–1099. https://doi.org/10.1016/j.anbehav.2007.08.022.
73. Borgatti SP. NetDraw software for network visualization. Lexington, KY: Analytic Technologies; 2002.
74. Manly BFJ. A note on the analysis of species co-occurrences. Ecology 1995;76: 1109–1115. https://doi.org/10.2307/1940919.
75. Whitehead H. Testing association patterns of social animals. Anim Behav. 1999;57: 26–29. doi: 10.1006/anbe.1999.1099 10373270
76. Newman MEJ. Modularity and community structure in networks. Proc Nat Acad Sci. 2006;103: 8577–8582. doi: 10.1073/pnas.0601602103 16723398
77. Lusseau D. Why are male social relationships complex in the Doubtful Sound bottlenose dolphin population? PLoS One. 2007;2(4): e348. doi: 10.1371/journal.pone.0000348 17406672
78. Newman MEJ. Analysis of weighted networks. Phys Rev E, 2004;70(5): 056131. https://doi.org/10.1103/PhysRevE.70.056131.
79. Dietz EJ. Permutation tests for association between two distance matrices. Syst Biol. 1983;32: 21–26. https://doi.org/10.1093/sysbio/32.1.21.
80. Whitehead H. Analysis of animal movement using opportunistic individual identifications: application to sperm whales. Ecology 2001;82: 1417–1432. https://doi.org/10.1890/0012-9658(2001)082[1417:AOAMUO]2.0.CO;2.
81. Garroway CJ, Bowman J, Wilson PJ. Complex social structure of southern flying squirrels is related to spatial proximity but not kinship. Behav Ecol Sociobiol. 2013;67: 113–122. https://doi.org/10.1007/s00265-012-1431-3.
82. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27: 209–220. 6018555
83. Haccou P, Meelis E. Statistical analysis of behavioural data: an approach based on time-structured models. New York: Oxford University Press; 1992.
84. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2016. Available from: https://www.r-project.org/.
85. Dewey M. Metap: meta-analysis of significance values. R package version 0.6. 2014. Available from: http://cran.r-project.org/package=metap.
86. Krause J, Krause S, Arlinghaus R, Psorakis I, Roberts S, Rutz C. Reality mining of animal social systems. Trends Ecol Evol. 2013;28: 541–551. doi: 10.1016/j.tree.2013.06.002 23856617
87. Rodgers TW, Giacalone J, Heske EJ, Janečka JE, Jansen PA, Phillips CA, et al. Socio-spatial organization and kin structure in ocelots from integration of camera trapping and noninvasive genetics. J Mammal. 2015;96: 120–128. https://doi.org/10.1093/jmammal/gyu012.
88. Wagner AP, Frank LG, Creel S. Spatial grouping in behaviourally solitary striped hyaenas, Hyaena hyaena. Anim Behav. 2008;75: 1131–1142. https://doi.org/10.1016/j.anbehav.2007.08.025.
89. Baker PJ, Robertson CPJ, Funk SM, Harris S. Potential fitness benefits of group living in the red fox, Vulpes vulpes. Anim Behav. 1998;56: 1411–1424. https://doi.org/10.1006/anbe.1998.0950. 9933538
90. van Ballenberghe V. Extraterritorial movements and dispersal of wolves in southcentral Alaska. J Mammal. 1983;64: 168–171. doi: 10.2307/1380773
91. Young AJ, Monfort SL. Stress and the costs of extra-territorial movement in a social carnivore. Biol Lett. 2009;5: 439–441. doi: 10.1098/rsbl.2009.0032 19324630
92. Ilany A, Booms AS, Holekamp KE. Topological effects of network structure on long-term social network dynamics in a wild mammal. Ecol Lett. 2015;18: 687–695. doi: 10.1111/ele.12447 25975663
93. McGregor HW, Legge S, Jones ME, Johnson CN. Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci Rep. 2016;6: 22559. doi: 10.1038/srep22559 26932268
94. Baker PJ, Harris S. Interaction rates between members of a group of red foxes (Vulpes vulpes). Mamm Rev. 2000;30: 239–242. https://doi.org/10.1046/j.1365-2907.2000.00072.x.
95. Mann J, Stanton MA, Patterson EM, Bienenstock EJ, Singh LO. Social networks reveal cultural behaviour in tool-using dolphins. Nat Commun. 2012;3: 980. doi: 10.1038/ncomms1983 22864573
96. Mourier J, Vercelloni J, Planes S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim Behav. 2012;83: 389–401. https://doi.org/10.1016/j.anbehav.2011.11.008.
97. Shizuka D, Chaine AS, Anderson J, Johnson O, Laursen IM, Lyon BE. Across-year social stability shapes network structure in wintering migrant sparrows. Ecol Lett. 2014;17: 998–1007. doi: 10.1111/ele.12304 24894316
98. Louis M, Gally F, Barbraud C, Béesau J, Tixier P, Simon-Bouhet B, Le Rest K, Guinet C. Social structure and abundance of coastal bottlenose dolphins, Tursiops truncatus, in the Normano-Breton Gulf, English Channel. J Mammal. 2015;96: 481–493. https://doi.org/10.1093/jmammal/gyv053.
99. Moorcroft PR. Mechanistic approaches to understanding and predicting mammalian space use: recent advances, future directions. J Mammal. 2012;93: 903–916. https://doi.org/10.1644/11-MAMM-S-254.1.
100. Pinter-Wollman N, Isbell LA, Hart LA. The relationship between social behaviour and habitat familiarity in African elephants (Loxodonta africana). Proc R Soc B. 2009;276: 1009–1014. doi: 10.1098/rspb.2008.1538 19129113
101. Carter AJ, Lee AEG, Marshall HH. Research questions should drive edge definitions in social network studies. Anim Behav. 2015;104: e7–e11. http://dx.doi.org/10.1016/j.anbehav.2015.03.020.
102. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature. 2005;435: 814–818. doi: 10.1038/nature03607 15944704
103. Jacoby DMP, Busawon DS, Sims DW. Sex and social networking: the influence of male presence on social structure of female shark groups. Behav Ecol. 2010;21; 808–818. https://doi.org/10.1093/beheco/arq061.
104. Blasi MF, Boitani L. Complex social structure of an endangered population of bottlenose dolphins (Tursiops truncatus) in the Aeolian Archipelago (Italy). PLoS One. 2014;9(12): e114849. doi: 10.1371/journal.pone.0114849 25494331
105. Palla G, Barabási A-L, Vicsek T. Quantifying social group evolution. Nature. 2007;446: 664–667. doi: 10.1038/nature05670 17410175
106. Lusseau D. The emergent properties of a dolphin social network. Proc R Soc B. 2003;270: S186–S188. doi: 10.1098/rsbl.2003.0057 14667378
107. Kanngiesser P, Sueur C, Riedl K, Grossmann J, Call J. Grooming network cohesion and the role of individuals in a captive chimpanzee group. Am J Primat. 2011;73: 758–767. https://doi.org/10.1002/ajp.20914.
108. Potts JR, Harris S, Giuggioli L. Territorial dynamics and stable home range formation for central place foragers. PLoS One. 2012;7(3): e34033. doi: 10.1371/journal.pone.0034033 22479510
109. Potts JR, Harris S, Giuggioli L. Quantifying behavioral changes in territorial animals caused by sudden population declines. Am Nat. 2013;182: E73–E82. doi: 10.1086/671260 23933730
110. Baird RW, Whitehead H. Social organization of mammal-eating killer whales: group stability and dispersal patterns. Can J Zool. 2000;78: 2096–2105. https://doi.org/10.1139/z00-155.
111. Wey TW, Blumstein DT. Social cohesion in yellow-bellied marmots is established through age and kin structuring. Anim Behav. 2010;79: 1343–1352. doi: 10.1016/j.anbehav.2010.03.008
112. Carter KD, Brand R, Carter JK, Shorrocks B, Goldizen AW. Social networks, long-term associations and age-related sociability of wild giraffes. Anim Behav. 2013;86: 901–910. https://doi.org/10.1016/j.anbehav.2013.08.002.
113. Hirsch BT, Prange S, Hauver SA, Gehrt SD. Raccoon social networks and the potential for disease transmission. PLoS One. 2013;8(10): e75830. doi: 10.1371/journal.pone.0075830 24130746
114. Christensen C, Radford AN. Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav Ecol. 2018;29: 1004–1013. doi: 10.1093/beheco/ary010
115. White PCL, Harris S, Smith GC. Fox contact behaviour and rabies spread: a model for the estimation of contact probabilities between urban foxes at different population densities and its implications for rabies control in Britain. J Appl Ecol. 1995;32: 693–706. doi: 10.2307/2404809.
116. Hradsky BA, Kelly LT, Robley A, Wintle BA. FoxNet: An individual-based model framework to support management of an invasive predator, the red fox. J Appl Ecol. 2019; https://doi.org/10.1111/1365-2664.13374.
117. Lowe S, Browne M, Boudjelas S, De Poorter. 100 of the world's worst invasive alien species: A selection from the global invasive species database. Gland, Switzerland: IUCN; 2000. Available from: www.issg.org/pdf/publications/worst_100/english_100_worst.pdf.
118. Muller Z, Cantor M, Cuthill IC, Harris S. Giraffe social preferences are context-dependent. Anim Behav. 2018;146: 37–49. https://doi.org/10.1016/j.anbehav.2018.10.006.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania