#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multiple evoked and induced alpha modulations in a visual attention task: Latency, amplitude and topographical profiles


Autoři: Manuel Vázquez-Marrufo aff001;  Macarena García-Valdecasas aff001;  Rocío Caballero-Diaz aff001;  Ruben Martin-Clemente aff002;  Alejandro Galvao-Carmona aff003
Působiště autorů: Experimental Psychology Department, Faculty of Psychology, University of Seville, Seville, Spain aff001;  Signal Processing and Communications Department, Higher Technical School of Engineering, University of Seville, Seville, Spain aff002;  Department of Psychology, Loyola Andalucía University, Seville, Spain aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223055

Souhrn

Alpha event-related desynchronization (ERD) has been widely applied to understand the psychophysiological role of this band in cognition. In particular, a considerable number of publications have described spectral alterations in several pathologies using this time-frequency approach. However, ERD is not capable of specifically showing nonphase (induced) activity related to the presentation of stimuli. Recent studies have described an evoked and induced activity in the early phases (first 200 ms) of stimulus processing. However, scarce studies have analyzed induced and evoked modulations in longer latencies (>200 ms) and their potential roles in cognitive processing. The main goal of the present study was to analyze diverse evoked and induced modulations in response to visual stimuli. Thus, 58-channel electroencephalogram (EEG) was recorded in 21 healthy subjects during the performance of a visual attention task, and analyses were performed for both target and standard stimuli. The initial result showed that phase-locked and nonphase locked activities coexist in the early processing of target and standard stimuli as has been reported by previous studies. However, more modulations were evident in longer latencies in both evoked and induced activities. Correlation analyses suggest that similar maps were present for evoked and induced activities at different timepoints. In the discussion section, diverse proposals will be stated to define the potential roles of these modulations in the information processing for this cognitive task. As a general conclusion, induced activity enables the observation of cognitive mechanisms that are not visible by ERD or ERP modulations.

Klíčová slova:

Cognition – Electroencephalography – Event-related potentials – Vision – Valleys – Modulation – Evoked potentials – Information processing


Zdroje

1. Herrmann CS, Rach S, Vosskuhl J, Strüber D (2014) Time-frequency analysis of event-related potentials: a brief tutorial. Brain Topogr. 27(4):438–50. doi: 10.1007/s10548-013-0327-5 24194116

2. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, et al. (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci. 22(11):2917–26. doi: 10.1111/j.1460-9568.2005.04482.x 16324126

3. Brismar T (2007)The human EEG—physiological and clinical studies. Physiol Behav;92(1–2):141–7. doi: 10.1016/j.physbeh.2007.05.047 17585964

4. Digiacomo MR, Marco-Pallarés J, Flores AB, Gómez CM (2008) Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets. Brain Res.1234:94–103. doi: 10.1016/j.brainres.2008.07.072 18708032

5. Pfurtscheller G (1977) Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr Clin Neurophysiol. 43(5):757–60. doi: 10.1016/0013-4694(77)90092-x 72657

6. Pfurtscheller G, Aranibar A, Maresch H (1979) Amplitude of evoked potentials and degree of event-related desynchronization (ERD) during photic stimulation. Electroencephalogr Clin Neurophysiol. 47(1):21–30. doi: 10.1016/0013-4694(79)90029-4 88358

7. Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol. 83(1):62–9. doi: 10.1016/0013-4694(92)90133-3 1376667

8. Alegre M, Imirizaldu L, Valencia M, Iriarte J, Arcocha J, et al. (2006) Alpha and beta changes in cortical oscillatory activity in a go/no go randomly-delayed-response choice reaction time paradigm. Clin Neurophysiol. 117(1):16–25. doi: 10.1016/j.clinph.2005.08.030 16316781

9. Karrasch M, Laine M, Rinne JO, Rapinoja P, Sinervä E, et al. (2006) Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease. Int J Psychophysiol. 59(2):168–78. doi: 10.1016/j.ijpsycho.2005.04.006 15967527

10. Başar E, Gölbaşı BT (2014) Event related desynchronization: use as a neurophysiologic marker is restricted. Cogn Neurodyn. 8(6):437–45. doi: 10.1007/s11571-014-9301-5 26396644

11. Klimesch W, Sauseng P, Hanslmayr S. (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 53(1):63–88. doi: 10.1016/j.brainresrev.2006.06.003 16887192

12. Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor magnetoencephalography rythms related to thumb movement. Neuroscience, vol. 60 (2), pp. 537–50, 1994. doi: 10.1016/0306-4522(94)90263-1 8072694

13. David O, Kilner JM, Friston KJ. Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage. 2006 Jul 15;31(4):1580–91. doi: 10.1016/j.neuroimage.2006.02.034 16632378

14. Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998). Induced alpha band power changes in the human EEG and attention. Neurosci Lett. 244(2):73–6. doi: 10.1016/s0304-3940(98)00122-0 9572588

15. Mu Y, Han S (2010) Neural oscillations involved in self-referential processing. Neuroimage. 53(2):757–68. doi: 10.1016/j.neuroimage.2010.07.008 20633661

16. Bareither I, Chaumon M, Bernasconi F, Villringer A, Busch NA (2014). Invisible visual stimuli elicit increases in alpha-band power. J Neurophysiol. 112(5):1082–90. doi: 10.1152/jn.00550.2013 24872526

17. Vázquez-Marrufo M, Vaquero E, Cardoso MJ, Gómez CM (2001). Temporal evolution of alpha and beta bands during visual spatial attention. Brain Res Cogn Brain Res. 2(2):315–20.

18. Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 15;20(6):RC63. 10704517

19. Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol. 95(6):3844–51. doi: 10.1152/jn.01234.2005 16571739

20. Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. Magnetoencephalographic cortical rhythms. Int J Psychophysiol. 1997 Jun;26(1–3):51–62. 9202994

21. Sabate M, Llanos C, Enriquez E, Gonzalez B, Rodriguez M (2011). Fast modulation of alpha activity during visual processing and motor control. Neuroscience. 189:236–49. doi: 10.1016/j.neuroscience.2011.05.011 21619912

22. Ergen M, Saban S, Kirmizi-Alsan E, Uslu A, Keskin-Ergen Y, et al (2014). Time-frequency analysis of the event-related potentials associated with the Stroop test. Int J Psychophysiol. 94(3):463–72. doi: 10.1016/j.ijpsycho.2014.08.177 25135670

23. Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55(4):468–484. doi: 10.1016/0013-4694(83)90135-9 6187540

24. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, et al. (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120(11):1883–1908. doi: 10.1016/j.clinph.2009.07.045 19796989

25. Truccolo WA, Ding M, Knuth KH, Nakamura R, Bressler SL. Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity. Clin. Neurophysiol., vol. 113, pp. 206–226, 2002. 11856626

26. Kileny PR, Kripal JP (1987) Test-retest variability of auditory event-related potentials. Ear Hear 8(2):110–114. doi: 10.1097/00003446-198704000-00008 3582802

27. Vázquez-Marrufo M, González-Rosa JJ, Galvao-Carmona A, Hidalgo-Muñoz A, Borges M, Peña JL, et al. (2013) Retest reliability of individual p3 topography assessed by high density electroencephalography. PLoS One. 8(5):e62523. doi: 10.1371/journal.pone.0062523 Print 2013. 23658739

28. Vázquez-Marrufo M, Galvao-Carmona A, Benítez Lugo ML, Ruíz-Peña JL, Borges Guerra M, et al. (2017) Retest reliability of individual alpha ERD topography assessed by human electroencephalography. PLoS One. 12(10):e0187244. doi: 10.1371/journal.pone.0187244 eCollection 2017. 29088307

29. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, et al. (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. 20(1):145–58. 14527577

30. Jones LA, Hills PJ, Dick KM, Jones SP, Bright P. Cognitive mechanisms associated with auditory sensory gating. Brain Cogn. 2016 Feb;102:33–45. doi: 10.1016/j.bandc.2015.12.005 26716891

31. Adams MS, Popovich C, Staines WR. Gating at early cortical processing stages is associated with changes in behavioural performance on a sensory conflict task. Behav Brain Res. 2017 Jan 15;317:179–187. doi: 10.1016/j.bbr.2016.09.037 27641325

32. Klimesch W, Doppelmayr M, Wimmer H, Gruber W, Röhm D, et al. (2001) Alpha and beta band power changes in normal and dyslexic children. Clin Neurophysiol.112(7):1186–95. 11516730

33. Woertz M, Pfurtscheller G, Klimesch W. (2004) Alpha power dependent light stimulation: dynamics of event-related (de)synchronization in human electroencephalogram.Brain Res Cogn Brain Res. 20(2):256–60. doi: 10.1016/j.cogbrainres.2004.03.014 15183396

34. Klimesch W. Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol. 1996 Nov;24(1–2):61–100 8978436

35. Klimesch W, Doppelmayr M, Pachinger T, Russegger H. Event-related desynchronization in the alpha band and the processing of semantic information. Brain Res Cogn Brain Res. 1997 Oct;6(2):83–94. 9450602

36. Klimesch W, Doppelmayr M, Schimke H, Ripper B. Theta synchronization and alpha desynchronization in a memory task. Psychophysiology. 1997 Mar;34(2):169–76. doi: 10.1111/j.1469-8986.1997.tb02128.x 9090266


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#