Living on the edge - circadian habitat usage in pre-weaning European hares (Lepus europaeus) in an intensively used agricultural area
Autoři:
Ulrich Voigt aff001; Ursula Siebert aff001
Působiště autorů:
Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222205
Souhrn
Over the last decades, the European hare (Lepus europaeus) has become the subject of many interdisciplinary studies due to the sharp Europe-wide population decline. In European hares, the first stage of life until weaning and the subsequent dispersal have been sparsely studied, in particular, habitat selection, movements and survival rate, as juveniles´ precocial lifestyle is dominated by concealment, motionlessness and inconspicuousness. In this study, free-living juvenile European hares (leverets) were detected systematically by thermography (n = 394), radio-tagged or marked (n = 122) from birth until the fifth week of life to research their habitat usage and pre-dispersal movements. The day-resting places and night locations, as well as the distance moved by leverets with aging, were evaluated by generalized linear mixed effect models. In addition, the habitat preference was assessed by a conservative use-availability analysis. Up to the fifth week of life, 30.5% of all leverets used cultivated areas in the daytime. In contrast, the remaining 69.4% animals inhabitated linear or small planar structures in the daytime, with the edges of field tracks, hedges and some ruderal structures clearly being preferred. At nighttime, 93% of all juveniles, which occupied linear structures in the daytime, used the adjoining fields up to 20 m away from the next linear structure. Nocturnal distances of more than 60 m to the next edge rarely occurred before the end of the pre-weaning phase. The time of day and age have a significant influence on the distance moved by juvenile hares. With increasing age, leverets moved less during the day and roamed further at night. The results are largely consistent with the behavioral patterns found in the few previous studies on pre-weaning European hares and show the importance of hiding places for leverets in early life stages. This study should contribute to a better understanding of behavior in juvenile life-history stages of European hares that may help to identify vulnerable phases in their lifecycle. In addition, the findings can refine existing population models and improve conservation efforts.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – People and places – Geographical locations – Europe – Medicine and health sciences – Physiology – Reproductive physiology – Vertebrates – Amniotes – Mammals – Endocrinology – Agriculture – Earth sciences – Ecology and environmental sciences – Ecology – Community ecology – Endocrine physiology – Leporids – Hares – Trophic interactions – Predation – Crop science – Crops – Chronobiology – Daylight – Sunset – Habitats – Seasons
Zdroje
1. Flux JEC, Angermann R. Chapter 4: The Hares and Jackrabbits. In: Chapman JA, Flux JEC, editors. Rabbits, Hares and Pikas: Status Survey and Conservation Action Plan: The World Conservation Union, Gland, Switzerland; 1990. p. 61–94.
2. Edwards PJ, Fletcher MR, Berny P. Review of the factors affecting the decline of the European brown hare, Lepus europaeus (Pallas, 1778) and the use of wildlife incident data to evaluate the significance of paraquat. Agr Ecosyst Environ. 2000;79(2–3): 95–103. doi: 10.1016/S0167-8809(99)00153-X
3. Smith RK, Vaughan Jennings N, Harris S. A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mamm Rev. 2005;35(1): 1–24. doi: 10.1111/j.1365-2907.2005.00057.x
4. Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krysufek B, Reijnders PJH, Spitzenberger F, et al. The Atlas of European Mammals. London: T. & A.D. Poyser; 1999.
5. Smith RK, Jennings NV, Robinson A, Harris S. Conservation of European hares Lepus europaeus in Britain: is increasing habitat heterogeneity in farmland the answer? J Appl Ecol. 2004;41(6): 1092–102. doi: 10.1111/j.0021-8901.2004.00976.x
6. Tapper SC, Barnes RFW. Influence of farming practice on the ecology of the Brown hare (Lepus europaeus). J Appl Ecol. 1986;23(1): 39–52. doi: 10.2307/2403079
7. Jennings N, Smith RK, Hackländer K, Harris S, White PCL. Variation in demography, condition and dietary quality of hares Lepus europaeus from high-density and low-density populations. Wildl Biol. 2006;12(2): 179–89. doi: 10.2981/0909-6396(2006)12[179:vidcad]2.0.co;2
8. Vaughan N, Lucas E-A, Harris S, White PCL. Habitat associations of European hares Lepus europaeus in England and Wales: implications for farmland management. J Appl Ecol. 2003;40(1): 163–75. doi: 10.1046/j.1365-2664.2003.00784.x
9. Hackländer K, Tataruch F, Ruf T. The effect of dietary fat content on lactation energetics in the European hare (Lepus europaeus). Physiol Biochem Zool. 2002;75(1): 19–28. doi: 10.1086/324770 11880974
10. Hackländer K, Arnold W, Ruf T. Postnatal development and thermoregulation in the precocial European hare (Lepus europaeus). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 2002;172(2): 183–90. doi: 10.1007/s00360-001-0243-y
11. Reitz F, Leoanrd Y. Characteristics of European hare Lepus europaeus use of space in a french agricultural region of intensive farming. Acta Theriol. 1994;39(2): 143–57.
12. Frylestam B. Reproduction in the European hare in Southern Sweden. Holarctic Ecol. 1980;3: 74–80.
13. Roellig K, Menzies BR, Hildebrandt TB, Goeritz F. The concept of superfetation: a critical review on a 'myth' in mammalian reproduction. Biol Rev Camb Philos Soc. 2011;86(1): 77–95. doi: 10.1111/j.1469-185X.2010.00135.x 20394608
14. Reichlin T, Klansek E, Hackländer K. Diet selection by hares (Lepus europaeus) in arable land and its implications for habitat management. Eur J Wildl Res. 2006;52(2): 109–18. doi: 10.1007/s10344-005-0013-3
15. Schai-Braun SC, Rödel HG, Hackländer K. The influence of daylight regime on diurnal locomotor activity patterns of the European hare (Lepus europaeus) during summer. Mamm Biol. 2012;77(6): 434–40. doi: 10.1016/j.mambio.2012.07.004
16. Homolka M. Daily activity pattern of the European hare (Lepus europaeus). Folia Zoologica. 1986;35(1): 33–42.
17. Kaluzinski J, Pielowski Z. The effect of technical agricultural operations on the hare population. In: Pielowski Z, Pucek Z, editors. Ecology and Management of European hare populations. Warsaw: Polish Hunting Association; 1976. p. 205–11.
18. Marboutin E, Aebischer NJ. Does harvesting arable crops influence the behaviour of the European hare Lepus europaeus? Wildl Biol. 1996;2(2): 83–91. doi: 10.2981/wlb.1996.036
19. Marboutin E, Bray Y, Peroux R, Mauvy B, Lartiges A. Population dynamics in European hare: breeding parameters and sustainable harvest rates. J Appl Ecol. 2003;40(3): 580–91. doi: 10.1046/j.1365-2664.2003.00813.x
20. Stoate C, Tapper SC. The impact of three hunting methods on Brown hare (Lepus europaeus) populations in Britain. Gibier Faune Sauvage. 1993;10: 229–40.
21. Erlinge S, Frylestam B, Göransson G, Högstedt G, Olof L, Jon L, et al. Predation on Brown Hare and Ring-Necked Pheasant Populations in Southern Sweden. Holarctic Ecol. 1984;7(3): 300–4. doi: 10.2307/3682752
22. Reynolds JC, Tapper SC. Predation by foxes Vulpes vulpes on brown hares Lepus europaeus in central southern England, and its potential impact on annual population growth. Wildl Biol. 1995;1(3): 145–58. doi: 10.2981/wlb.1995.019
23. Pépin D. Variation in survival of Brown hare (Lepus europaeus) leverets from different farmland areas in the Paris basin. J Appl Ecol. 1989;26(1): 13–23. doi: 10.2307/2403647
24. Frölich K, Wisser J, Schmüser H, Fehlberg U, Neubauer H, Grunow R, et al. Epizootiologic and ecologic investigations of European brown hares (Lepus europaeus) in selected populations from Schleswig-Holstein, Germany. J Wildl Dis. 2003;39(4): 751–61. doi: 10.7589/0090-3558-39.4.751 14733269
25. Lamarque F, Barratt J, Moutou F. Principle diagnoses for determining causes of mortality in the European hare (Lepus europaeus) found dead in France between 1986 and 1994. Gibier Fauna Sauvage. 1996;13: 53–72.
26. Bensinger S, Kugelschafter K, Eskens U, Sobiraj A. Studies on the fertility of the European hare (Lepus europaeus PALLAS, 1778) in Germany. Zeitschrift Fur Jagdwissenschaft. 2000;46(2): 73–83. doi: 10.1007/BF02241570
27. Sibly RM, Brown JH. Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat. 2009;173(6): E185–99. doi: 10.1086/598680 19374555
28. Marboutin E, Hansen K. Survival rates in a nonharvested brown hare population. J Wildl Manag. 1998;62(2): 772–9. doi: 10.2307/3802354
29. Broekhuizen S, Maaskamp F. Behaviour and maternal relations of young European hares during the nursing period. In: Pielowski Z, Pucek Z, editors. Ecology and Management of European hare populations. Warsaw: Polish Hunting Association; 1976. p. 59–67.
30. Broekhuizen S, Maaskamp F. Behavior of does and leverets of the European hare (Lepus europaeus) whilst nursing. J Zool. 1980;191(4): 487–501. doi: 10.1111/j.1469-7998.1980.tb01480.x
31. Broekhuizen S, Bouman E, Went W. Variation in timing of nursing in the Brown Hare (Lepus europaeus) and the European Rabbit (Oryctolagus cuniculus). Mamm Rev. 1986;16(3–4): 139–44. doi: 10.1111/j.1365-2907.1986.tb00034.x
32. Martinet L, Demarne Y. Nursing behaviour and lactation in the brown hare (Lepus europaeus) raised in captivity. Acta Zool Fenn. 1984;171: 187–90.
33. Rongstad OJ, Tester JR. Behavior and Maternal Relations of Young Snowshoe Hares. J Wildl Manage. 1971;35(2): 338–46. doi: 10.2307/3799610
34. O'Donoghue M. Early Survival of Juvenile Snowshoe Hares. Ecology. 1994;75(6): 1582–92. doi: 10.2307/1939619
35. Dahl F, Willebrand T. Natal dispersal, adult home ranges and site fidelity of mountain hares Lepus timidus in the boreal forest of Sweden. Wildl Biol. 2005;11(4): 309–17. doi: 10.2981/0909-6396(2005)11[309:ndahra]2.0.co;2
36. Bray Y, Devillard S, Marboutin E, Mauvy B, Péroux R. Natal dispersal of European hare in France. J Zool. 2007;273(4): 426–34. doi: 10.1111/j.1469-7998.2007.00348.x
37. Avril A, Léonard Y, Letty J, Péroux R, Guitton J-S, Pontier D. Natal dispersal of European hare in a high-density population. Mamm Biol. 2011;76(2): 148–56. doi: 10.1016/j.mambio.2010.07.001
38. State Authority for Mining EaG. NIBIS® - Map Server; 2018. [cited 2019 Jan 25]. Database: Soil Science—Bodenfruchtbarkeit (Ertragsfähigkeit) [Internet]. Available from: http://nibis.lbeg.de/cardomap3/?permalink=2JKQ22AB
39. Langbein J, Hutchings MR, Harris S, Stoate C, Tapper SC, Wray S. Techniques for assessing the abundance of Brown hares Lepus europaeus. 1999;29(2): 93–116. doi: 10.1046/j.1365-2907.1999.00040.x
40. Strauss E, Grauer A, Bartel M, Klein R, Wenzelides L, Greiser G, et al. The German wildlife information system: population densities and development of European Hare (Lepus europaeus PALLAS) during 2002–2005 in Germany. Eur J Wildl Res. 2008;54(1): 142–7.
41. Bray Y, Champely S, Soyez D. Age determination in leverets of European hare Lepus europaeus based on body measurements. Wildl Biol. 2002;8(1): 31–9. doi: 10.2981/wlb.2002.005
42. White GC, Garrott RA. Chapter 4—Estimating Animal Locations. In: White GC, Garrott RA, editors. Analysis of Wildlife Radio-Tracking Data. San Diego: Academic Press; 1990. p. 41–78.
43. Mech LD, Barber SM. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service. Jamestown, ND: U. S. Geological Survey, 2002.
44. Conrad J. The Sun/Moon Calculator; 1998–2019. [cited 2016 Aug 23]. Database: [Internet]. Available from: https://www.largeformatphotography.info/sunmooncalc/
45. RCoreTeam. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
46. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67(1): 1–48. doi: 10.18637/jss.v067.i01
47. Barton K. MuMIn: Multi-Model Inference. R package version 1.42.1. 2018.
48. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
49. Neu CW, Byers CR, Peek JM. A Technique for Analysis of Utilization-Availability Data. J Wildl Manage. 1974;38(3): 541–5. doi: 10.2307/3800887
50. Cherry S. A Comparison of Confidence Interval Methods for Habitat Use-Availability Studies. J Wildl Manage. 1996;60(3): 653–8. doi: 10.2307/3802084
51. Byers CR, Steinhorst RK, Krausman PRC. Clarification of a Technique for Analysis of Utilization-Availability Data. J Wildl Manage. 1984;48(3): 1050–3. doi: 10.2307/3801467
52. Bailey BJR. Large Sample Simultaneous Confidence Intervals for the Multinomial Probabilities Based on Transformations of the Cell Frequencies. Technometrics. 1980;22(4): 583–9. doi: 10.1080/00401706.1980.10486208
53. Cherry S. Statistical tests in publications of The Wildlife Society. Wildl Soc Bull. 1998;26(4): 947–53.
54. Bingham RL, Brennan LA. Comparison of type I error rates for statistical analyses of resource selection. J Wildl Manag. 2004;68(1): 206–12. doi: 10.2193/0022-541X(2004)068[0206:COTIER]2.0.CO;2
55. O'Donoghue M, Bergman CM. Early movements and dispersal of juvenile Snowshoe hares. Can J Zool. 1992;70(9): 1787–91. doi: 10.1139/z92-246
56. Holley AJF. Studies on the biology of the brown hare (Lepus europaeus) with particular reference to behaviour. Doctoral Thesis, Durham University. 1992. Available from: http://etheses.dur.ac.uk/6135/
57. Ronget V, Gaillard J-M, Coulson T, Garratt M, Gueyffier F, Lega J-C, et al. Causes and consequences of variation in offspring body mass: meta-analyses in birds and mammals. Biol Rev. 2018;93(1): 1–27. doi: 10.1111/brv.12329 28393457
58. Chapman JA, Flux JEC. Introduction to the Lagomorpha. In: Alves PC, Ferrand N, Hackländer K, editors. Lagomorph Biology. Berlin Heidelberg: Springer; 2008. p. 1–9.
59. Pépin D, editor Body weight of hares in the Paris Basin (France). Proceedings of World Lagomorph Conference; 1979 12–16 August 1979; Guelph, Canada.
60. O'Donoghue M. Reproduction, juvenile survival and movements of Snowshoe hares at a cyclic population peak. M. Sc. Thesis, University of British Columbia. 1991. Available from: https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0098635
61. Avril A, Letty J, Leonard Y, Pontier D. Exploration forays in juvenile European hares (Lepus europaeus): dispersal preludes or hunting-induced troubles? BMC Ecol. 2014;14: 6. doi: 10.1186/1472-6785-14-6 24568541
62. Frid A, Dill L. Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol. 2002;6(1).
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania