Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections
Autoři:
Rasha M. Khairy aff001; Ebtisam S. Mohamed aff001; Hend M. Abdel Ghany aff002; Soha S. Abdelrahim aff001
Působiště autorů:
Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
aff001; Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
aff002; Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222441
Souhrn
The emergence of E.coli strains displaying patterns of virulence genes from different pathotypes shows that the current classification of E.coli pathotypes may be not enough, the study aimed to compare the phylogenetic groups and urovirulence genes of uropathogenic Escherichia coli (UPEC) and diarrheagenic E.coli (DEC) strains to extend the knowledge of E.coli classification into different pathotypes. A total of 173 UPEC and DEC strains were examined for phylogenetic typing and urovirulence genes by PCR amplifications. In contrast to most reports, phylogenetic group A was the most prevalent in both UPEC and DEC strains, followed by B2 group. Amplification assays revealed that 89.32% and 94.29% of UPEC and DEC strains, respectively, carried at least one of the urovirulence genes, 49.5% and 31.4% of UPEC and DEC strains, respectively, carried ≥ 2 of the urovirulence genes, fim H gene was the most prevalent (66.9% and 91.4%) in UPEC and DEC strains respectively. Twenty different patterns of virulence genes were identified in UPEC while 5 different patterns in DEC strains. Strains with combined virulence patterns of four or five genes were belonged to phylogenetic group B2. Our finding showed a closer relationship between the DEC and UPEC, so raised the suggestion that some DEC strains might be potential uropathogens. These findings also provide different insights into the phylogenetic classification of E. coli as pathogenic or commensals where group A can be an important pathogenic type as well as into the classification as intestinal or extra- intestinal virulence factors.
Klíčová slova:
Biology and life sciences – Research and analysis methods – Molecular biology – Evolutionary biology – Molecular biology techniques – Computer and information sciences – Evolutionary systematics – Phylogenetics – Taxonomy – Data management – Anatomy – Medicine and health sciences – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Pathology and laboratory medicine – Pathogens – Virulence factors – Digestive system – Zoology – Diagnostic medicine – Signs and symptoms – Gastroenterology and hepatology – Urology – Urinary tract infections – Artificial gene amplification and extension – Polymerase chain reaction – Gastrointestinal tract – Animal phylogenetics – Diarrhea
Zdroje
1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; 2(2):123–40. doi: 10.1038/nrmicro818 15040260
2. Abba K, Sinfield R, Hart CA, Garner P. Pathogens associated with persistent diarrhea in children in low and middle income countries: systematic review. BMC Infect Dis. 2009; 9: 1–15. doi: 10.1186/1471-2334-9-1 19144106
3. Campos ACC, Andrade NL, Ferdous M, Chlebowicz MA, Santos CC, Correal JCD, et al. Comprehensive Molecular Characterization of Escherichia coli Isolates from Urine Samples of Hospitalized Patients in Rio de Janeiro, Brazil. Front Microbiol. 2018; 16: 9. 243.
4. Cyoia PS, Rodrigues GR, Nishio EK, Medeiros LP, Koga VL, Pereira AP, et al. Presence of virulence genes and pathogenicity islands in extraintestinal pathogenic Escherichia coli isolates from Brazil. J. Infect. Dev. Ctries. 2015; 9: 1068–1075. doi: 10.3855/jidc.6683 26517481
5. Lara FB, Nery DR, de Oliveira PM, Araujo ML, Carvalho FR, Messias-Silva LC, et al. Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Front Microbiol. 2017; (3)8:146. doi: 10.3389/fmicb.2017.00146 28217123
6. Xie J, Foxman B, Zhang L, Marrs CF. Molecular epidemiologic identification of Escherichia coli genes that are potentially involved in movement of the organism from the intestinal tract to the vagina and bladder. J Clin Microbiol. 2006; 44: 2434–2441. doi: 10.1128/JCM.00397-06 16825361
7. Snyder JA, Lloyd AL, Lockatell CV, Johnson DE, Mobley HL. Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun. 2006; 74(2):1387–93. doi: 10.1128/IAI.74.2.1387-1393.2006 16428790
8. Alizade H, Ghanbarpour R, and Aflatoonian MR. Virulence genotyping of Escherichia coli isolates from diarrheic and urinary tract infections in relation to phylogeny in southeast of Iran. Trop. Biomed. 2014; 31: 174–182. 24862058
9. Stordeur P, Bree A, Mainil J, Moulin-Schouleur M. Pathogenicity of pap-negative avian Escherichia coli isolated from septicemic lesions. Microbes Infect. 2004; 6(7): 637–45. doi: 10.1016/j.micinf.2004.03.006 15158770
10. Simms AN, Mobley HL. Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol. 2008; 190(10): 3747–56. doi: 10.1128/JB.01870-07 18359812
11. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis. 2013; 17(6):e450–3. doi: 10.1016/j.ijid.2013.01.025 23510539
12. Wiles TJ, and Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiology. 2013; 8(1): 73–84. doi: 10.2217/fmb.12.131 23252494
13. Doumith M, Day MJ, Hope, Wain J, and Woodford N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 2012; 50: 3108–3110. doi: 10.1128/JCM.01468-12 22785193
14. Bielaszewska M, Schiller R, Lammers L, Bauwens A, Fruth A, Middendorf B, et al. Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6. EMBO Mol. Med. 2014; 6: 347–357. doi: 10.1002/emmm.201303133 24413188
15. Abe CM, Salvador FA, Falsetti IN, Vieira MA, Blanco J, Blanco JE, et al. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 2008; 52: 397–406. doi: 10.1111/j.1574-695X.2008.00388.x 18336383
16. Toval F, Köhler C-D, Vogel U, Wagenlehner F, Mellmann A, Fruth A, et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J.Clin.Microbiol. 2014; 52: 407–418. doi: 10.1128/JCM.02069-13 24478469
17. Ang CW, Bouts H, Rossen JW, VanderKuip M, VanHeerde M, and Bökenkamp A. Diarrhea, urosepsis and hemolytic uremic syndrome caused by the same heteropathogenic Escherichia coli strain. Pediatr. Infect.Dis. J. 2016; 35, 1045–1047. doi: 10.1097/INF.0000000000001226 27195604
18. Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, et al. Diarrheagenic Escherichiacoli. BrazilianJ. Microbiol. 2016; 47: 3–30.
19. Robins-Browne RM, Holt KE, Ingle DJ, Hocking DM, Yang J, and Tauschek M. Are Escherichia coli pathotypes still relevant in the Era of Whole-genome sequencing? Front. Cell.Infect. Microbiol. 2016; 6:141. doi: 10.3389/fcimb.2016.00141 27917373
20. Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H. Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol. 1995; 33(3): 701–5. 7751380
21. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000; 66(10):4555–8. doi: 10.1128/aem.66.10.4555-4558.2000 11010916
22. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, et al. Genetic background of Escherichia coli and extended-spectrum beta-lactamase type. Emerg Infect Dis. 2005; 11: 54–61. doi: 10.3201/eid1101.040257 15705323
23. Le Bouguenec CM, Archambaud and A. Labigne. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 1992; 30:1189–1193. 1349900
24. Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol. 1995; 12(2): 85–90. doi: 10.1111/j.1574-695X.1995.tb00179.x 8589667
25. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 20000; 181: 261–72. doi: 10.1086/315217 10608775
26. Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, Vary JC, et al. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN among Escherichia coli isolates from patients with urosepsis. Infect Immun. vol. 2000; 68: 3040–7. doi: 10.1128/iai.68.5.3040-3047.2000 10769012
27. Lee JH, Subhadra B, Son YJ, Kim DH, Park HS, Kim JM, et al. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Lett Appl Microbiol. 2016; 62(1):84–90. doi: 10.1111/lam.12517 26518617
28. Munkhdelger Y, Gunregjav N, Dorjpurev A, Juniichiro N. and Sarantuya J. Detection of virulence genes, phylogenetic group and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. J. Infect. Dev. Ctries. 2017; 11(1): 51–57 doi: 10.3855/jidc.7903 28141590
29. Katouli M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran. J. Microbiol. 2010; 2: 59–72. 22347551
30. Piatti G, Mannini A, Balistreri M, & Schito M. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. Journal of Clinical Microbiology. 2008; 46(2): 480–487. doi: 10.1128/JCM.01488-07 18057134
31. Adib N, Ghanbarpour R, Solatzadeh H, Alizade H. Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny. Tropical Biomedicine. 2014; 31(1): 17–25. 24862040
32. Moreno E, Andreu A, Perez T, Sabate M, Johnson JR, Prats G. Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts. Epidemiology and Infection. 2006; 134(5): 1015–1023. doi: 10.1017/S0950268806005917 16438745
33. López-Banda DA, Carrillo-Casas EM, Leyva-Leyva M, Orozco-Hoyuela G, Manjarrez-Hernández AH, Arroyo-Escalante S, et al. Identification of Virulence Factors Genes in Escherichia coli Isolates from Women with Urinary Tract Infection in Mexico. Biomed Res Int. 2014; Article ID 959206, 10 P.
34. Grude N, Potaturkina-Nesterova NI, Jenkins A, Strand L, Nowrouzian FL, Nyhus J, Kristiansen BEA. Comparison of phylogenetic group, virulence factors and antibiotic resistance in Russian and Norwegian isolates of Escherichia coli from urinary tract infection. Clin. Microbiol. Infect. 2007; 13: 208–211. doi: 10.1111/j.1469-0691.2006.01584.x 17328737
35. Tong Y, Sun S, Chi Y. Virulence genotype and phylogenetic groups in relation to chinese herb resistance among Escherichia coli from patients with acute pyelonephritis. Afr. J. Tradit. Complement Altern. Med. 2014; 11: 234–238 doi: 10.4314/ajtcam.v11i3.33 25371588
36. Duriez P, Clermont O, Bonacorsi S, Bingen E, Chaventre A, Elion J, et al. Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology. 2001; 147(6):1671–6.
37. Blyton MD, Cornall SJ, Kennedy K, Colligon P, Gordon DM. Sex-dependent competitive dominance of phylogenetic group B2 Escherichia coli strains within human hosts. Environ Microbiol Rep. 2014; 6(6): 605–10. 25756113
38. Pérez C, Gómez-Duarte OG, Arias ML. Diarrheagenic Escherichia coli in children from Costa Rica. Am J Trop Med Hyg. 2010; 83: 292–297. doi: 10.4269/ajtmh.2010.09-0412 20682870
39. Mosquito S, Pons MJ, Riveros M, Ruiz J, Ochoa TJ. Diarrheagenic Escherichia coli phylogroups are associated with antibiotic resistance and duration of diarrheal episode. Sci World J. 2015; 610403.
40. Zaki ME and Elewa A. Evaluation of Uropathogenic Virulence Genes in Escherichia coli Isolated from Children with Urinary Tract Infection. International Journal of Advanced Research. 2015; 3(3): 165–173.
41. Karimian A, Momtaz H, Madani M. Detection of uropathogenic Escherichia coli virulence factors in patients with urinary tract infections in Iran. African Journal of Microbiology. 2012; 6(39): 6811–6816
42. Jalali HR, Eslami G, Fallah F, Pourbakhsh A. Genotyping of Virulence Factors of Uropathogenic Escherichia coli by PCR. Novel Biomed. 2015; 3(4):177–81.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania