#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments


Autoři: Elisabeth Dietze aff001;  Dariusz Brykała aff003;  Laura T. Schreuder aff004;  Krzysztof Jażdżewski aff005;  Olivier Blarquez aff006;  Achim Brauer aff002;  Michael Dietze aff007;  Milena Obremska aff008;  Florian Ott aff009;  Anna Pieńczewska aff010;  Stefan Schouten aff004;  Ellen C. Hopmans aff004;  Michał Słowiński aff012
Působiště autorů: Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research, Research Unit Potsdam, Polar Terrestrial Environmental Systems, Potsdam, Germany aff001;  GFZ German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, Potsdam, Germany aff002;  Polish Academy of Sciences, Institute of Geography and Spatial Organization, Toruń, Poland aff003;  Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands aff004;  Museum of the Kościerzyna Land, Kościerzyna, Poland aff005;  Département de Géographie, Université de Montréal, Montréal, Québec, Canada aff006;  GFZ German Research Centre for Geosciences, Section Geomorphology, Potsdam, Germany aff007;  Polish Academy of Sciences, Institute of Geological Sciences, Warsaw, Poland aff008;  Max Planck Institute for the Science of Human History, Department of Archaeology, Jena, Germany aff009;  Kaziemierz Wielki University, Institute of Geography, Bydgoszcz, Poland aff010;  Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands aff011;  Polish Academy of Sciences, Institute of Geography and Spatial Organization, Warsaw, Poland aff012
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222011

Souhrn

Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3–5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk.

Klíčová slova:

Biology and life sciences – Organisms – Eukaryota – Plants – Engineering and technology – People and places – Geographical locations – Europe – Earth sciences – Ecology and environmental sciences – Ecology – Ecosystems – Forests – Ecological metrics – Trees – Terrestrial environments – Marine and aquatic sciences – European Union – Bodies of water – Aquatic environments – Freshwater environments – Biomass – Wildfires – Lakes – Pines – Fire engineering – Fire suppression technology – Geology – Petrology – Sediment – Sedimentary geology – Poland


Zdroje

1. Bowman DMJS Balch JK, Artaxo P Bond WJ, Carlson JM Cochrane MA, et al. Fire in the Earth System. Science. 2009;324(5926):481–4. doi: 10.1126/science.1163886 19390038

2. Pausas JG, Keeley JE, Schwilk DW. Flammability as an ecological and evolutionary driver. Journal of Ecology. 2017;105(2):289–97. doi: 10.1111/1365-2745.12691

3. Steffen W, Persson Å, Deutsch L, Zalasiewicz J, Williams M, Richardson K, et al. The Anthropocene: From Global Change to Planetary Stewardship. AMBIO. 2011;40(7):739. doi: 10.1007/s13280-011-0185-x 22338713

4. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, et al. The human dimension of fire regimes on Earth. Journal of Biogeography. 2011;38(12):2223–36. doi: 10.1111/j.1365-2699.2011.02595.x 22279247

5. Pyne SJ. Fire in the mind: Changing understandings of fire in western civilization. Philosophical transactions—Royal Society Biological sciences. 2016;371(1696):8.

6. Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews. 2009;28(27–28):3016–34. http://dx.doi.org/10.1016/j.quascirev.2009.09.028.

7. Ruddiman WF, Ellis EC, Kaplan JO, Fuller DQ. Defining the epoch we live in. Science. 2015;348(6230):38–9. doi: 10.1126/science.aaa7297 25838365

8. Vannière B, Blarquez O, Rius D, Doyen E, Brücher T, Colombaroli D, et al. 7000-year human legacy of elevation-dependent European fire regimes. Quaternary Science Reviews. 2016;132:206–12. http://dx.doi.org/10.1016/j.quascirev.2015.11.012.

9. Blarquez O, Talbot J, Paillard J, Lapointe-Elmrabti L, Pelletier N, Gates St-Pierre C. Late Holocene influence of societies on the fire regime in southern Québec temperate forests. Quaternary Science Reviews. 2018;180:63–74. https://doi.org/10.1016/j.quascirev.2017.11.022.

10. Dietze E, Theuerkauf M, Bloom K, Brauer A, Dörfler W, Feeser I, et al. Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quaternary Science Reviews. 2018;201:44–56. https://doi.org/10.1016/j.quascirev.2018.10.005.

11. Lhotka O, Kyselý J, Farda A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theoretical and Applied Climatology. 2018;131(3):1043–54. doi: 10.1007/s00704-016-2031-3

12. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [ Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Girma B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., and White L.L. (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. 688 p.

13. Munteanu C, Kuemmerle T, Keuler NS, Müller D, Balázs P, Dobosz M, et al. Legacies of 19th century land use shape contemporary forest cover. Global Environmental Change. 2015;34:83–94. https://doi.org/10.1016/j.gloenvcha.2015.06.015.

14. van der Werf GR, Peters W, van Leeuwen TT, Giglio L. What could have caused pre-industrial biomass burning emissions to exceed current rates? Clim Past. 2013;9(1):289–306. doi: 10.5194/cp-9-289-2013

15. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, et al. Climate and human influences on global biomass burning over the past two millennia. Nature Geosci. 2008;1(10):697–702. http://www.nature.com/ngeo/journal/v1/n10/suppinfo/ngeo313_S1.html.

16. Taylor AH, Trouet V, Skinner CN, Stephens S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proceedings of the National Academy of Sciences. 2016;113(48):13684–9. doi: 10.1073/pnas.1609775113 27849589

17. Power M, Mayle F, Bartlein P, Marlon J, Anderson R, Behling H, et al. Climatic control of the biomass-burning decline in the Americas after ad 1500. The Holocene. 2013;23(1):3–13. doi: 10.1177/0959683612450196

18. Wang Z, Chappellaz J, Park K, Mak JE. Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science. 2010. doi: 10.1126/science.1197257 21127215

19. Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, et al. Unexpected Changes to the Global Methane Budget over the Past 2000 Years. Science. 2005;309(5741):1714–7. doi: 10.1126/science.1115193 16151008

20. Marlon JR, Kelly R, Daniau AL, Vannière B, Power MJ, Bartlein P, et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences. 2016;13(11):3225–44. doi: 10.5194/bg-13-3225-2016

21. Molinari C, Lehsten V, Bradshaw RHW, Power MJ, Harmand P, Arneth A, et al. Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis. Global Ecology and Biogeography. 2013;22(12):1248–60. doi: 10.1111/geb.12090

22. Pechony O, Shindell DT. Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences. 2010;107(45):19167–70. doi: 10.1073/pnas.1003669107 20974914

23. Marcisz K, Gałka M, Pietrala P, Miotk-Szpiganowicz G, Obremska M, Tobolski K, et al. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland. Quaternary Science Reviews. 2017;177:145–57. https://doi.org/10.1016/j.quascirev.2017.10.018.

24. Marcisz K, Colombaroli D, Jassey VEJ, Tinner W, Kołaczek P, Gałka M, et al. A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Scientific Reports. 2016;6:33907. doi: 10.1038/srep33907 https://www.nature.com/articles/srep33907#supplementary-information. 27658521

25. McWethy DB, Higuera PE, Whitlock C, Veblen TT, Bowman DMJS, Cary GJ, et al. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Global Ecology and Biogeography. 2013;22(8):900–12. doi: 10.1111/geb.12038

26. Słowiński M, Lamentowicz M, Łuców D, Barabach J, Brykała D, Tyszkowski S, et al. Paleoecological and historical data as an important tool in ecosystem management. Journal of Environmental Management. 2019;236:755–68. doi: 10.1016/j.jenvman.2019.02.002 30776550

27. Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL. Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences. 2017;114(11):2946–51. doi: 10.1073/pnas.1617394114 28242690

28. van Marle MJE, Kloster S, Magi BI, Marlon JR, Daniau AL, Field RD, et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci Model Dev. 2017;10(9):3329–57. doi: 10.5194/gmd-10-3329-2017

29. Stephens SL, Agee JK, Fulé PZ, North MP, Romme WH, Swetnam TW, et al. Managing Forests and Fire in Changing Climates. Science. 2013;342(6154):41–2. doi: 10.1126/science.1240294 24092714

30. Keane RE. Wildland Fuel Fundamentals and Applications. New York, NY: Springer; 2015.

31. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, et al. A human-driven decline in global burned area. Science. 2017;356(6345):1356–62. doi: 10.1126/science.aal4108 28663495

32. Whitlock C, Colombaroli D, Conedera M, Tinner W. Land-use history as a guide for forest conservation and management. Conservation Biology. 2018;32(1):84–97. doi: 10.1111/cobi.12960 28574184

33. Arneth A, Sitch S, Pongratz J, Stocker BD, Ciais P, Poulter B, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geosci. 2017;10(2):79–84. doi: 10.1038/ngeo2882 http://www.nature.com/ngeo/journal/v10/n2/abs/ngeo2882.html#supplementary-information.

34. Ward DS, Shevliakova E, Malyshev S, Rabin S. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities. Global Biogeochemical Cycles. 2018;32(1):122–42. doi: 10.1002/2017GB005787

35. Keeley JE. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 2009;18(1):116–26. https://doi.org/10.1071/WF07049.

36. Han YM, Peteet DM, Arimoto R, Cao JJ, An ZS, Sritrairat S, et al. Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-glacial-Holocene Transition. Scientific Reports. 2016;6:20719. doi: 10.1038/srep20719 http://www.nature.com/articles/srep20719#supplementary-information. 26860820

37. Legrand M, McConnell J, Fischer H, Wolff EW, Preunkert S, Arienzo M, et al. Boreal fire records in Northern Hemisphere ice cores: a review. Clim Past. 2016;12(10):2033–59. doi: 10.5194/cp-12-2033-2016

38. Tinner W, Hofstetter S, Zeugin F, Conedera M, Wohlgemuth T, Zimmermann L, et al. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps—implications for fire history reconstruction. The Holocene. 2006;16(2):287–92. doi: 10.1191/0959683606hl925rr

39. Peters ME, Higuera PE. Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quaternary Research. 2007;67(2):304–10. http://dx.doi.org/10.1016/j.yqres.2006.10.004.

40. Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys. 2011;11(9):4039–72. doi: 10.5194/acp-11-4039-2011

41. Hawthorne D, Courtney Mustaphi CJ, Aleman JC, Blarquez O, Colombaroli D, Daniau A-L, et al. Global Modern Charcoal Dataset (GMCD): A tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quaternary International. 2018;488:3–17. https://doi.org/10.1016/j.quaint.2017.03.046.

42. Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs. 2009;79(2):201–19. doi: 10.1890/07-2019.1

43. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews. 2009;28(5–6):555–76. http://dx.doi.org/10.1016/j.quascirev.2008.11.005.

44. Whitlock C, Larsen C. Charcoal as a Fire Proxy. In: Smol JP, Birks HJB, Last WM, editors. Tracking Environmental Change Using Lake Sediments Terrestrial, Algal, and Siliceous Indicators. 3. Dordrecht, The Netherlands: KluwerAcademic Publishers; 2001. p. 75–97.

45. Marcisz K, Tinner W, Colombaroli D, Kolaczek P, Słowiński M, Fiaikiewicz-Koziel B, et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quaternary Science Reviews. 2015;112:138–52. doi: 10.1016/j.quascirev.2015.01.019 WOS:000351977500011.

46. Kuo L-J, Herbert BE, Louchouarn P. Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Organic Geochemistry. 2008;39(10):1466–78. http://doi.org/10.1016/j.orggeochem.2008.04.026.

47. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment. 1999;33(2):173–82. http://dx.doi.org/10.1016/S1352-2310(98)00145-9.

48. Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, et al. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment. 2008;42(1):126–41. https://doi.org/10.1016/j.atmosenv.2007.09.028.

49. Fabbri D, Torri C, Simoneit BRT, Marynowski L, Rushdi AI, Fabiańska MJ. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment. 2009;43(14):2286–95. doi: 10.1016/j.atmosenv.2009.01.030

50. Kuo L-J, Louchouarn P, Herbert BE. Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: Implications for characterizations of biomass combustion residues. Chemosphere. 2011;85(5):797–805. doi: 10.1016/j.chemosphere.2011.06.074 21762951

51. Engling G, Carrico CM, Kreidenweis SM, Collett JL Jr, Day DE, Malm WC, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment. 2006;40(SUPPL. 2):299–311. doi: 10.1016/j.atmosenv.2005.12.069

52. Schüpbach S, Kirchgeorg T, Colombaroli D, Beffa G, Radaelli M, Kehrwald NM, et al. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala. Quaternary Science Reviews. 2015;115(0):123–31. http://dx.doi.org/10.1016/j.quascirev.2015.03.004.

53. Battistel D, Argiriadis E, Kehrwald N, Spigariol M, Russell JM, Barbante C. Fire and human record at Lake Victoria, East Africa, during the Early Iron Age: Did humans or climate cause massive ecosystem changes? The Holocene. 2017;27(7):997–1007. doi: 10.1177/0959683616678466

54. Argiriadis E, Battistel D, McWethy DB, Vecchiato M, Kirchgeorg T, Kehrwald NM, et al. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Scientific Reports. 2018;8(1):12113. doi: 10.1038/s41598-018-30606-3 30108240

55. Sang XF, Gensch I, Kammer B, Khan A, Kleist E, Laumer W, et al. Chemical stability of levoglucosan: An isotopic perspective. Geophysical Research Letters. 2016;43(10):5419–24. doi: 10.1002/2016GL069179

56. Fraser MP, Lakshmanan K. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science & Technology. 2000;34(21):4560–4. doi: 10.1021/es991229l

57. Mullaugh KM, Byrd JN, Avery GB Jr, Mead RN, Willey JD, Kieber RJ. Characterization of carbohydrates in rainwater from the Southeastern North Carolina. Chemosphere. 2014;107:51–7. doi: 10.1016/j.chemosphere.2014.03.014 24875870

58. Knicker H, Hilscher A, de la Rosa JM, González-Pérez JA, González-Vila FJ. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils. Geoderma. 2013;197–198:43–50. http://dx.doi.org/10.1016/j.geoderma.2012.12.021.

59. Schreuder LT, Hopmans EC, Stuut J-BW, Sinninghe Damsté JS, Schouten S. Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean. Geochimica et Cosmochimica Acta. 2018. https://doi.org/10.1016/j.gca.2018.02.020.

60. Wójcik G, Marciniak K. Opady atmosferyczne w regionie Dolnej Wisły w okresie 1951–1980 [Atmospheric precipitation in the Lower Vistula region in the period 1951–1980]. In: Churski Z, editor. Uwarunkowania przyrodnicze i społeczno-ekonomiczne zagospodarowania Dolnej Wisły [Natural and socio-economic conditions of the Lower Vistula menagement]. Toruń: IG UMK; 1993. p. 107–21.

61. Woś A. Klimat Polski [Climate of Poland]. Warszawa: PWN; 1999.

62. Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences. 2013;110(16):6442–7. doi: 10.1073/pnas.1211466110 23559374

63. San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A, Strobl P, Libertà G, et al. Comprehensive monitoring of wildfires in Europe: the European Forest Fire Information System (EFFIS). In: Tiefenbacher J, editor. Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts. http://effis.jrc.ec.europa.eu/:InTech; 2012.

64. Niklasson M, Zin E, Zielonka T, Feijen M, Korczyk AF, Churski M, et al. A 350-year tree-ring fire record from Białowieża Primeval Forest, Poland: implications for Central European lowland fire history. Journal of Ecology. 2010;98(6):1319–29. doi: 10.1111/j.1365-2745.2010.01710.x

65. Broda J. Historia leśnictwa w Polsce [History of forestry in Poland]. Poznań: Wydawnictwo Akademii Rolniczej im Augusta Cieszkowskiego w Poznaniu; 2000.

66. McGrath MJ, Luyssaert S, Meyfroidt P, Kaplan JO, Bürgi M, Chen Y, et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences. 2015;12(14):4291–316. doi: 10.5194/bg-12-4291-2015

67. Bienias D. Las i człowiek w Borach Tucholskich (uwagi o bartnictwie i smolarstwie w Borach Tucholskich) [The Forest and human in the Tuchola Pinewoods (comments about forest beekeeping and tar burning)]. In: Woźny J, editor. Dziedzictwo techniczne Borów Tucholskich Bydgoszcz: Przedsiębiorstwo Marketingowe LOGO; 2009. p. 43–51.

68. Hasel K, Schwartz E. Forstgeschichte. Ein Grundriss für Studium und Praxis [Forest history. A sketch for study and application]. 2nd ed. Remagen: Kessel; 2002.

69. Konig A. Die Entwicklung der staatlichen Forstwirtschaft in Westpreussen und ihre Beziehungen zur Landeskultur [The development of governmental forestry in Western Prussia and its relationship to state culture]. Gdansk1905.

70. Giętkowski T. Zmiany lesistości Borów Tucholskich w latach 1938–2000 [Temporal change of forest area in Tuchola Pinewoods region between 1938–2000]. Promotio Geographica Bydgostiensia. 2009;4.

71. Słowiński M, Błaszkiewicz M, Brauer A, Noryśkiewicz B, Ott F, Tyszkowski S. The role of melting dead ice on landscape transformation in the early Holocene in Tuchola Pinewoods, North Poland. Quaternary International. 2015;388:64–75. http://dx.doi.org/10.1016/j.quaint.2014.06.018.

72. Ott F, Kramkowski M, Wulf S, Plessen B, Serb J, Tjallingii R, et al. Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland. The Holocene. 2018;28(3):464–77. doi: 10.1177/0959683617729448

73. Trachsel M, Telford RJ. All age–depth models are wrong, but are getting better. The Holocene. 2017;27(6):860–9. doi: 10.1177/0959683616675939

74. Clark JS. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research. 1988;30(1):67–80. http://dx.doi.org/10.1016/0033-5894(88)90088-9.

75. Hopmans EC, dos Santos RAL, Mets A, Damsté JSS, Schouten S. A novel method for the rapid analysis of levoglucosan in soils and sediments. Organic geochemistry. 2013;58:86–8.

76. Theuerkauf M, Couwenberg J, Kuparinen A, Liebscher V. A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Veget Hist Archaeobot. 2016:1–13. doi: 10.1007/s00334-016-0572-0

77. Blarquez O, Girardin MP, Leys B, Ali AA, Aleman JC, Bergeron Y, et al. Paleofire reconstruction based on an ensemble-member strategy applied to sedimentary charcoal. Geophysical Research Letters. 2013;40(11):2667–72. doi: 10.1002/grl.50504

78. Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, et al. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proceedings of the National Academy of Sciences. 2012;109(51):20966–70. doi: 10.1073/pnas.1203467109 23213207

79. Higuera PE, Chipman ML, Barnes JL, Urban MA, Hu FS. Variability of tundra fire regimes in Arctic Alaska: millennial‐scale patterns and ecological implications. Ecological Applications. 2011;21(8):3211–26. doi: 10.1890/11-0387.1

80. Loader C. locfit: Local Regression, Likelihood and Density Estimation. R package. 1.5–9.1. ed2013.

81. Young D, Benaglia T, Chauveau D, Hunter D. mixtools: Tools for Analyzing Finite Mixture Models. R package. 1.1.0 ed2017.

82. Higuera PE, Brubaker LB, Anderson PM, Brown TA, Kennedy AT, Hu FS. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLOS ONE. 2008;3(3):e0001744. doi: 10.1371/journal.pone.0001744 18320025

83. Gavin DG, Hu FS, Lertzman K, Corbett P. Weak climatic control of stand-scale fire history during the late Holocene. Ecology. 2006;87(7):1722–32. doi: 10.1890/0012-9658(2006)87[1722:wccosf]2.0.co;2 16922322

84. Schütte R. Die Tucheler Haide vornehmlich in forstlicher Beziehung. Danzig: 1893.

85. Clark JS, Royall PD. Pre-industrial particulate emissions and carbon sequestration from biomass burning in North America. Biogeochemistry. 1994;24(1):35–51. doi: 10.1007/bf00001306

86. Higuera PE, Peters ME, Brubaker LB, Gavin DG. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews. 2007;26(13–14):1790–809. http://dx.doi.org/10.1016/j.quascirev.2007.03.010.

87. Adolf C, Wunderle S, Colombaroli D, Weber H, Gobet E, Heiri O, et al. The sedimentary and remote‐sensing reflection of biomass burning in Europe. Global Ecology and Biogeography. 2018;27(2):199–212. doi: 10.1111/geb.12682

88. Vachula RS, Russell JM, Huang Y, Richter N. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeography, Palaeoclimatology, Palaeoecology. 2018;508:166–75. doi: 10.1016/j.palaeo.2018.07.032

89. Cyzman W, Oleksik-Tusińska A. Jednolity program gospodarczo–ochronny dla leśnego kompleksu promocyjnego „Bory Tucholskie” [Unified economic and protective programmm for Promotional Forest Complex "Tuchola Pinewoods"]. Torun2008. 233 p.

90. Geissler A, Koschinski K. 130 Jahre "Ostbahn Berlin—Königsberg–Baltikum". Berlin: GVE; 1997.

91. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, et al. 2500 Years of European Climate Variability and Human Susceptibility. Science. 2011;331(6017):578–82. doi: 10.1126/science.1197175 21233349

92. Cook ER, Seager R, Kushnir Y, Briffa KR, Büntgen U, Frank D, et al. Old World megadroughts and pluvials during the Common Era. Science Advances. 2015;1(10). doi: 10.1126/sciadv.1500561 26601136

93. Miętus M. Jednorodność wieloletnich serii pomiarowych. Rzeczywistość czy fikcja? Annales Universitatis Mariae Curie-Skłodowska Sectio B 2000/2001;50/51(29):239–48.

94. Zumbrunnen T, Bugmann H, Conedera M, Bürgi M. Linking Forest Fire Regimes and Climate—A Historical Analysis in a Dry Inner Alpine Valley. Ecosystems. 2009;12(1):73–86. doi: 10.1007/s10021-008-9207-3

95. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres. 2003;108(D1):ACL 4-1-ACL 4–15. doi: 10.1029/2002JD002347

96. Roos CI, Zedeño MN, Hollenback KL, Erlick MMH. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proceedings of the National Academy of Sciences. 2018;115(32):8143–8. doi: 10.1073/pnas.1805259115 30037995

97. Dost P. 100 Jahre Königliche Ostbahn in Berlin [100 years of the Royal East Railway in Berlin]. Westpreußen-Jahrbuch. 1967;17:83–8.

98. Trollope WSW, Trollope LA, Hartnett DC. Fire behaviour as a key factor in the fire ecology of African grasslands and savannas. In: Viegas DX, editor. Forest Fire Research and Wildland Fire: Millpress, Rotterdam Netherlands; 2002.

99. Gunderson LH, Holling CS. Panarchy: Understanding Transformations In Human And Natural Systems. Washington, D.C.: Island Press; 2002.

100. Houston Durrant T, de Rigo D, Caudullo G. Pinus sylvestris in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European Atlas of Forest Tree Species. Luxembourg: Publications Office of the European Union; 2016. p. e016b94+.

101. Szczygieł R. Pożary w lasach–charakterystyka, przyczyny, koszty [Fires in the forests–characteristics, drivers, costs]. In: Guzewski P, Wróblewski D, Małozięć D, editors. Czerwona księga pożarów [Red book of fires]. 1. Józefów: Wydawnictwo CNBOP-PIB; 2016. p. 463–510.

102. Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, et al. Vegetation limits the impact of a warm climate on boreal wildfires. New Phytologist. 2013;199(4):1001–11. doi: 10.1111/nph.12322 23691916

103. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, et al. Forest disturbances under climate change. Nature Clim Change. 2017;7(6):395–402. doi: 10.1038/nclimate3303 http://www.nature.com/nclimate/journal/v7/n6/abs/nclimate3303.html#supplementary-information. 28861124


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#