Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach
Autoři:
Mathilde Scheifler aff001; Magdalena Ruiz-Rodríguez aff001; Sophie Sanchez-Brosseau aff001; Elodie Magnanou aff001; Marcelino T. Suzuki aff002; Nyree West aff003; Sébastien Duperron aff004; Yves Desdevises aff001
Působiště autorů:
Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
aff001; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM Observatoire Océanologique, Banyuls/Mer, France
aff002; Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls/Mer, France
aff003; CNRS, Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, UMR7245 MCAM, Muséum National d’Histoire Naturelle, Paris, France
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221475
Souhrn
Next‐generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Invertebrates – Parasitology – Anatomy – Medicine and health sciences – Nematoda – Digestive system – Respiratory system – Physiology – Zoology – Body fluids – Mucus – Animal anatomy – Aquatic respiratory anatomy – Gills – Gastrointestinal tract – Flatworms – Intestinal parasites – Parasitic diseases – Parasitic intestinal diseases
Zdroje
1. Lafferty K, Allesina S, Arim M, Briggs C, De Leo G, Dobson A, et al. Parasites in food webs: The ultimate missing links. Ecology Letters. 2008;11(6):533–46. doi: 10.1111/j.1461-0248.2008.01174.x 18462196
2. Bush AO, Fernández JC, Esch GW, Seed JR. Parasitism: The diversity and ecology of animal parasites. In: Parasitology; 2001.
3. Bahri S, Marques A. Gill infection of Symphodus tinca by Henneguya sp. (Myxozoa, Myxobolidae) in Kerkennah Islands, Tunisia. Bulletin of the European Association of Fish Pathologists. 2014;28(2):42–5.
4. Skovgaard A, Meneses I, Angélico MM. Identifying the lethal fish egg parasite Ichthyodinium chabelardi as a member of Marine Alveolate Group I. Environmental Microbiology. 2009;11(8):2030–41. doi: 10.1111/j.1462-2920.2009.01924.x 19453613
5. Boualleg C, Ferhati H, Kaouachi N, Bensouilah M, Ternengo S. The copepod parasite of the gills of four teleost fishes caught from the gulf of Annaba (Algeria). African Journal of Microbiology Research. 2010;4(9):801–7.
6. M’Rabet C, Ensibi C, Dhaouadi R, Yahia OK. A preliminary study on gill parasites of gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from the eastern Tunisian sea-cage aquaculture. GERF Bulletin of Biosciences. 2016;7(1):1–5.
7. Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N. Inter individual variations of the fish skin microbiota: Host genetics basis of mutualism? PLoS ONE. 2014;9(7):1–17.
8. Rohde K. Marine parasitology. CSIRO; 2005. 565 p.
9. Korallo NP, Vinarski M V., Krasnov BR, Shenbrot GI, Mouillot D, Poulin R. Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Diversity and Distributions. 2007;13(3):353–60.
10. Hatcher MJ, Dick JTA, Dunn AM. Diverse effects of parasites in ecosystems: Linking interdependent processes. Frontiers in Ecology and the Environment. 2012;10(4):186–94.
11. Hino A, Maruyama H, Kikuchi T. A novel method to assess the biodiversity of parasites using 18S rDNA Illumina sequencing; parasitome analysis method. Parasitology International. 2016;65(5):572–5.
12. Cowart DA, Pinheiro M, Mouchel O, Maguer M, Grall J, Miné J, et al. Metabarcoding Is Powerful yet Still Blind: A Comparative Analysis of Morphological and Molecular Surveys of Seagrass Communities. Mazzuca S, editor. PLOS ONE. 2015 Feb 10;10(2):e0117562. doi: 10.1371/journal.pone.0117562 25668035
13. Lanzén A, Lekang K, Jonassen I, Thompson EM, Troedsson C. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities. Molecular Ecology. 2016 Sep;25(17):4392–406. doi: 10.1111/mec.13761 27454455
14. Lambert A. Oncomiracidiums et phylogenèse des Monogenea (Plathelminthes). Annales de Parasitologie Humaine et Comparée. 1980;55(2):165–98. French 7458157
15. Martin JW, Olesen J, Høeg J. Atlas of crustacean larvae. 2014. 370 p.
16. Barson M. The occurrence of Contracaecum sp. larvae (Nematoda: Anisakidae) in the catfish Clarias gariepinus (Burchell) from Lake Chivero, Zimbabwe. The Onderstepoort journal of veterinary research. 2004;71(1):35–9 15185573
17. Galindo GM, Rodrigues RA, Marcondes SF, Soares P, Tavares LER, Fernandes CE. Morphological and morphometric features of nematode-cysts in Gymnotus inaequilabiatus liver in the Brazilian Pantanal. Revista Brasileira de Parasitologia Veterinaria. 2017;26(3):285–91. doi: 10.1590/S1984-29612017044 28902262
18. Trujillo-González A, Constantinoiu CC, Rowe R, Hutson KS. Tracking transparent monogenean parasites on fish from infection to maturity. International Journal for Parasitology: Parasites and Wildlife. 2015;4(3):316–22. doi: 10.1016/j.ijppaw.2015.06.002 26199875
19. Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Molecular Ecology Resources. 2013;13(5):862–76. doi: 10.1111/1755-0998.12139 23848968
20. Friedheim S. Comparison of Species Identification Methods DNA Barcoding versus Morphological Taxonomy. Mānoa Horizons. 2016;1:74–86.
21. Rohde K, Hayward C, Heap M, Gosper D. A tropical assemblage of ectoparasites: gill and head parasites of Lethrinus miniatus (Teleostei, Lethrinidae). International Journal for Parasitology. 1994 24(7):1031–53.
22. Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology. 1995 Aug 1;25(8):945–70. doi: 10.1016/0020-7519(95)00015-t 8550295
23. Ghiraldelli L, Laterca Martins M, Tomas Jeronimo G, Maia Yamashita M, de Barros Adamante W. Ectoparasites Communities from Oreochromis niloticus Cultivated in the State of Santa Catarina, Brazil. Journal of Fisheries and Aquatic Science. 2006;1(2):181–90.
24. Ramdane Z, Trilles JP, Mahé K, Amara R. Metazoan ectoparasites of two teleost fish, Boops boops (L.) and Mullus barbatus barbatus L. from Algerian coast: Diversity, parasitological index and impact of parasitism. Cybium. 2013;37(1–2):59–66.
25. Diamanka A, Boudaya L, Toguebaye BS, Pariselle A. Lamellodiscus euzeti n. sp. (Monogenea: Diplectanidae), a parasite from Dentex canariensis and D. gibbosus (Teleostei: Sparidae) in the Atlantic Ocean and Mediterranean Sea. Parasite. 2011;18(2):145–50. doi: 10.1051/parasite/2011182145 21678790
26. Moravec F, Justine J Lou. Cucullanid nematodes (Nematoda: Cucullanidae) from deep-sea marine fishes off New Caledonia, including Dichelyne etelidis n. sp. Systematic Parasitology. 2011;78(2):95–108. doi: 10.1007/s11230-010-9281-8 21279559
27. Vieira FM, Pereira FB, Pantoja C, Soares IA, Pereira AN, Timi JT, et al. A survey of nematodes of the genus Cucullanus Müller, 1777 (Nematoda, Seuratoidea) parasitic in marine fishes off Brazil, including description of three new species. Zootaxa. 2015;4039(2):289–311. doi: 10.11646/zootaxa.4039.2.5 26624480
28. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology. 2017;26(21):5872–95 doi: 10.1111/mec.14350 28921802
29. Lobo J, Shokralla S, Costa MH, Hajibabaei M, Costa FO. DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Scientific Reports. 2017 Dec 15;7(1):15618. doi: 10.1038/s41598-017-15823-6 29142319
30. Smith KF, Kohli GS, Murray SA, Rhodes LL. Assessment of the metabarcoding approach for community analysis of benthic-epiphytic dinoflagellates using mock communities. New Zealand Journal of Marine and Freshwater Research. 2017;51(4):555–76.
31. Sogin M, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial Diversity in the Deep Sea and the Underexplored “Rare Biosphere.” Proceedings of the National Academy of Sciences. 2006;103(32):243–52.
32. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7. doi: 10.1038/nature11053 22699611
33. Amir A, Zeisel A, Zuk O, Elgart M, Stern S, Shamir O, et al. High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions. Nucleic Acids Research. 2013;41(22):e205 doi: 10.1093/nar/gkt1070 24214960
34. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. Environmental DNA. Molecular Ecology. 2012;21:1789–93. doi: 10.1111/j.1365-294X.2012.05542.x 22486819
35. Zimmermann J, Glöckner G, Jahn R, Enke N, Gemeinholzer B. Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Molecular Ecology Resources. 2015 May 1;15(3):526–42. doi: 10.1111/1755-0998.12336 25270047
36. Leung TLF, Donald KM, Keeney DB, Koehler A V., Peoples RC, Poulin R. Trematode parasites of Otago Harbour (New Zealand) soft-sediment intertidal ecosystems: Life cycles, ecological roles and DNA barcodes. New Zealand Journal of Marine and Freshwater Research. 2009;43(4):857–65.
37. Tanaka R, Hino A, Tsai IJ, Palomares-Rius JE, Yoshida A, Ogura Y, et al. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS ONE. 2014;9(10):1–11.
38. Lott MJ, Hose GC, Power ML. Parasitic nematode communities of the red kangaroo, Macropus rufus: richness and structuring in captive systems. Parasitology Research. 2015;114(8):2925–32. doi: 10.1007/s00436-015-4494-z 25916465
39. Aivelo T, Medlar A. Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology. 2018;145(5):608–21. doi: 10.1017/S0031182017000610 28534454
40. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology and Evolution. 2012;27(4):233–43. doi: 10.1016/j.tree.2011.11.010 22244672
41. Berry O, Bulman C, Bunce M, Coghlan M, Murray DC, Ward RD. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series. 2015;540:167–81.
42. Ruiz-Rodríguez M, Scheifler M, Sanchez-Brosseau S, Magnanou E, West N, Suzuki MTet al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microbial Ecology. 2019 submitted
43. Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology. 2016;18(5):1403–14. doi: 10.1111/1462-2920.13023 26271760
44. Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high frequency sampling. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 2018 Jan 1;12(10):2417–32.
45. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461 20709691
46. Caporaso JG, Justin Kuczynski, Stombaugh J, Bittinger K, Bushmann F, Costello E, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303 20383131
47. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–20. doi: 10.1093/bioinformatics/btt593 24142950
48. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research. 2013 Jan;41(Database issue):D590–6. doi: 10.1093/nar/gks1219 23193283
49. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research. 2014;42(Databse issue):643–8. doi: 10.1093/nar/gkt888
50. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME journal: International Society for Microbial Ecology. 2012 Jan;6(1):94–103.
51. Balvočiute M, Hudson DH. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? BMC Genomics. 2017;18(Suppl 2):114. doi: 10.1186/s12864-017-3501-4 28361695
52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712
53. Gómez F, Skovgaard A. A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae). Journal of Marine Biology. 2015(1).
54. Chauhan R, Lone S. Pathogenecity of three species of Aspergillus (A. fumigatus, A. niger & A. sydowii) on some fresh water fishes. Life Sciences Leaflets. 2014;48:65–72.
55. Tayyab M, Gul S, Nazir R, Rehman H, Rehman A, Saeed K, et al. Fish Parasites prevailing in the fishes of Indus River at D.I. Khan Khyber Pakhtunkhwa, Pakistan. Journal of Entomology and Zoology Studies. 2017;5(4):422–7.
56. Tasic S, Miladinovic Tasic N. Cladosporium ssp.—Cause of Opportunistic Mycoses. Acta Fac Med Naiss. 2007;24(1):15–9.
57. Ho JS, Lin CL. Three species of Caligus Müller, 1785 (Copepoda: Caligidae) parasitic on Caranx spp. (Teleostei: Carangidae) off Taiwan. Systematic Parasitology. 2007;68(1):33–43. doi: 10.1007/s11230-006-9084-0 17429578
58. Ho J, Lin C, Chang W. Four species of Caligus Müller, 1785 (Copepoda, Siphonostomatoida, Caligidae) parasitic on marine fishes of Taiwan. Journal of Natural History. 2007;41(5–8):401–17.
59. Andrews M, Battaglene S, Cobcroft J, Adams M, Noga E, Nowak B. Host response to the chondracanthid copepod Chondracanthus goldsmidi, a gill parasite of the striped trumpeter, Latris lineata (Forster), in Tasmania. Journal of Fish Diseases. 2010;33(3):211–20. doi: 10.1111/j.1365-2761.2009.01107.x 19912458
60. Braicovich PE, Lanfranchi AL, Incorvaia IS, Timi JT. Chondracanthid copepod parasites of dories (Zeiformes: Zeidae) with the description of a new species of Chondracanthus from waters off northern Argentina. Folia Parasitologica. 2013;60(4):359–64. 24261137
61. Bui S, Dalvin S, Dempster T, Skulstad OF, Edvardsen RB, Wargelius A, et al. Susceptibility, behaviour, and retention of the parasitic salmon louse (Lepeophtheirus salmonis) differ with Atlantic salmon population origin. Journal of Fish Diseases. 2018;41(3):431–42. doi: 10.1111/jfd.12707 28921589
62. Ugelvik MS, Skorping A, Mennerat A. Parasite fecundity decreases with increasing parasite load in the salmon louse Lepeophtheirus salmonis infecting Atlantic salmon Salmo salar. Journal of Fish Diseases. 2017;40(5):671–8. doi: 10.1111/jfd.12547 27594545
63. Tang D, Uyeno D, Nagasawa K. Species of Taeniacanthus Sumpf, 1871 (Crustacea: Copepoda: Taeniacanthidae) parasitic on boxfishes (Tetraodontiformes: Aracanidae and Ostraciidae) from the Indo-West Pacific region, with descriptions of two new species. Systematic Parasitology. 2011;80(2):141–57. doi: 10.1007/s11230-011-9318-7 21898203
64. Kim IH, Moon SY. Ten new species of parasitic cyclopoid copepods (Crustacea) belonging to the families Bomolochidae, Philichthyidae, and Taeniacanthidae from marine fishes in Korea. Ocean Science Journal. 2013;48(4):361–98.
65. Yurakhno VM, Ovcharenko MO, Holzer AS, Sarabeev VL, Balbuena JA. Kudoa unicapsula n. sp. (Myxosporea: Kudoidae) a parasite of the Mediterranean mullets Liza ramada and L. aurata (Teleostei: Mugilidae). Parasitology Research. 2007;101(6):1671–80. doi: 10.1007/s00436-007-0711-8 17846792
66. Diebakate C, Fall M, Faye N, Toguebaye BS. Unicapsula marquesi n. sp. (Myxosporea, Multivalvulida) parasite des branchies de Polydactylus quadrifilis (Cuvier, 1829) (Poisson, Polynemidae) des côtes sénégalaises (Afrique de l’Ouest). Parasite. 1999;6:231–5. French doi: 10.1051/parasite/1999063231 10511971
67. Al-Jufaili SH, Freeman MA, Machkevskyi VK, Al-Nabhani A, Palm HW. Morphological, ultrastructural, and molecular description of Unicapsula fatimae n. sp. (Myxosporea: Trilosporidae) of whitespotted rabbitfish (Siganus canaliculatus) in Omani waters. Parasitology Research. 2016;115(3):1173–84. doi: 10.1007/s00436-015-4851-y 26693719
68. Petter A, Lèbre C, Radujkovic B. Nematodes parasites de poissons Osteichthyens de l’Adriatique Meridionale. Acta Adriatica. 1984;25(1/2):205–21. French
69. Bartlett CM. Morphogenesis of Contracaecum rudolphii (Nematoda: Ascaridoidea), a parasite of fish-eating birds, in its copepod precursor and fish intermediate hosts. Parasite. 1996;3(4):367–76.
70. Tavakol S, Smit WJ, Sara JR, Halajian A, Luus-Powell WJ. Distribution of Contracaecum (Nematoda: Anisakidae) larvae in freshwater fish from the Northern Regions of South Africa. African Zoology. 2015;50(2):133–9.
71. Moravec F, Justine J Lou. Two new species of nematode parasites, Cucullanus epinepheli sp. n. (Cucullanidae) and Procamallanus (Spirocamallanus) sinespinis sp. n. (Camallanidae), from marine serranid and haemulid fishes offNew Caledonia. Folia Parasitologica. 2017;64(1):011.
72. Moravec F, Fiala I, Dyková I. New data on the morphology of Dichelyne hartwichi (Nematoda, Cucullanidae), a parasite of freshwater tetraodontid fishes (Tetraodon spp.) in Thailand. Acta Parasitologica. 2011;56(4):433–7
73. Valtonen ET, Valtonen T. Cystidicola farionis as a swimbladder parasite of the whitefish in the Bothnian Bay. Journal of Fish Biology. 1978;13(5):557–61.
74. Muzzall PM. Parasites of Pacific Salmon, Oncorhynchus spp., from the Great Lakes. Journal of Great Lakes Research. 1995;21(2):248–56.
75. Navone GT, Sardella NH, Timi JT. Larvae and adults of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and crustaceans in the south west Atlantic. Parasite. 1998;5(2):127–36. doi: 10.1051/parasite/1998052127 9754308
76. Özer A, Kornyychuk YM, Yurakhno V, Öztürk T. Seasonality and host-parasite interrelationship of Hysterothylacium aduncum (Nematoda) in whiting Merlangius merlangus off the southern and northern coasts of the Black Sea. Helminthologia. 2016;53(3):248–56.
77. Cross JH, Basaca-Sevilla V. Capillariasis philippinensis: a fish-borne parasitic zoonosis. The Southeast Asian journal of tropical medicine and public health. 1991;22 Suppl(2):153–7.
78. Moravec F, Justine J-L. Capillaria plectropomi n. sp. (Nematoda: Capillariidae), a new intestinal parasite of the leopard coral grouper Plectropomus leopardus (Serranidae) off New Caledonia. Parasite. 2014;21:76. doi: 10.1051/parasite/2014076 25531932
79. Neifar L, Euzet L, Oliver G. Lamellodiscus (Plathelminthes, Monogenea, Diplectanidae) nouveaux parasites branchiaux des poissons marins du genre Pagrus (Teleostei, Sparidae). Zoosystema. 2004;26(3):365–76. French
80. Noisy D, Maillard C. Microhabitat branchial préférentiel de Microcotyle chrysophrii. Annales de Parasitologie Humaine et Comparée. 1980;33–40. Frencg
81. Ayadi ZEM, Gey D, Justine J Lou, Tazerouti F. A new species of Microcotyle (Monogenea: Microcotylidae) from Scorpaena notata (Teleostei: Scorpaenidae) in the Mediterranean Sea. Parasitology International. 2017;66(2):37–42. doi: 10.1016/j.parint.2016.11.004 27840197
82. Pasternak Z, Diamant A, Abelson A. Co-invasion of a Red Sea fish and its ectoparasitic monogenean, Polylabris cf. mamaevi into the Mediterranean: Observations on oncomiracidium behavior and infection levels in both seas. Parasitology Research. 2007;100(4):721–7. doi: 10.1007/s00436-006-0330-9 17096147
83. Bayoumy EM, El-Lamie MMM, Derwa HIM. First Report of Polylabris lingaoensis (Monogenoidea: Polyopisthocotylea) Infesting the Gills of Acanthopagrus bifasciatus From the Red Sea, Off. World Journal of Fish and Marine Sciences. 2015;7(3):209–13.
84. Timi JT, Martorelli SR, Sardella NH. Digenetic trematodes parasitic on Engraulis anchoita (Pisces: Engraulidae) from Argentina and Uruguay. Folia Parasitologica. 1999;46(2):132–8. 10425743
85. Born-Torrijos A, Poulin R, Pérez-del-Olmo A, Culurgioni J, Raga JA, Holzer AS. An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds. International Journal for Parasitology. 2016;46(11):745–53. doi: 10.1016/j.ijpara.2016.06.005 27492874
86. Alama-Bermejo G, Montero FE, Raga JA, Holzer AS. Skoulekia meningialis n. gen., n. sp. (Digenea: Aporocotylidae Odhner, 1912) a parasite surrounding the brain of the Mediterranean common two-banded seabream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) (Teleostei: Sparidae): Description, molecular phylogeny, habitat and pathology. Parasitology International. 2011;60(1):34–44. doi: 10.1016/j.parint.2010.10.001 20950706
87. Palacios-Abella JF, Georgieva S, Mele S, Raga JA, Isbert W, Kostadinova A, et al. Skoulekia erythrini n. sp. (Digenea: Aporocotylidae): a parasite of Pagellus erythrinus (L.) (Perciformes: Sparidae) from the western Mediterranean with an amendment of the generic diagnosis. Systematic Parasitology. 2017;94(6):669–88. doi: 10.1007/s11230-017-9733-5 28573546
88. Ahuir-Baraja AE, Padrós F, Palacios-Abella JF, Raga JA, Montero FE. Accacoelium contortum (Trematoda: Accacoeliidae) a trematode living as a monogenean: Morphological and pathological implications. Parasites and Vectors. 2015;8(1):540
89. Bartoli P, Bray RA. Two species of the fish digenean genus Rhipidocotyle Diesing, 1858 (Bucephalidae) reported for the first time from European seas. Systematic Parasitology. 2005;62(1):47–58. doi: 10.1007/s11230-005-3170-6 16132870
90. Al-Zubaidy AB. First record of Lecithochirium sp. (Digenea: Hemiuridae) in the marine fish Carangoides bajad from the Red Sea, Coast of Yemen. Journal of King Abdulaziz University, Marine Science. 2010;21(1):85–94.
91. Morsy K, Bashtar AR, Abdel-Ghaffar F, Baksh W. First record of Lecithochirium grandiporum (Digenea: Hemiuridae) infecting the lizard fish Saurida tumbil from the Red Sea. Parasitology Research. 2012;111(6):2339–44. doi: 10.1007/s00436-012-3111-7 22968948
92. Ndiaye PI, Quilichini Y, Sène A, Tkach V V, Bâ CT, Marchand B. Ultrastructural characters of the spermatozoa in Digeneans of the genus Lecithochirium Lühe, 1901 (Digenea, Hemiuridae), parasites of fishes: comparative study of L. microstomum and L. musculus. Parasite. 2014;21:49. doi: 10.1051/parasite/2014050 25275216
93. Sripa B, Bethony JM, Sithithaworn P, Kaewkes S, Mairiang E, Loukas A, et al. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Tropica. 2011;120 Suppl 1 (Suppl 1):S158–68.
94. Radujkovic B, Sundic D. Parasitic flatworms (Platyhelminthes: Monogenea, Digenea, Cestoda) of fishes from the Adriatic Sea. Natura Montenegrina. 2014;13(1):7–280
95. Muñoz G, Díaz PE. Checklist of parasites of labrid fishes (Pisces: Labridae). 2015. 95 p.
96. Lainson R. Theileria electrophori n.sp., a parasite of the electric eel Electrophorus electricus (Osteichthyes: Cypriniformes: Gymnotidae) from Amazonian Brazil. Memorias do Instituto Oswaldo Cruz. 2007;102(2):155–7 doi: 10.1590/s0074-02762007005000004 17426878
97. Baker JR, Muller R, Rollinson D. Advances in parasitology. Volume 36. Academic Press; 1995. 415 p.
98. Alvarez-Pellitero P, Sitjà-Bobadilla A. Cryptosporidium molnari n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, Sparus aurata L. and Dicentrarchus labrax L. International Journal for Parasitology. 2002;32(8):1007–21. doi: 10.1016/s0020-7519(02)00058-9 12076630
99. Ryan U. Cryptosporidium in birds, fish and amphibians. Experimental Parasitology. 2010;124(1):113–20. doi: 10.1016/j.exppara.2009.02.002 19545515
100. Diouf JN, Toguebaye B. Eimeria spari n. sp. (Apicomplexa, Emeriidae) parasite of Sparus caeruleostictus (Valenciennes, 1830), (Pisces, Sparidae) from the coast of Senegal. Parasite. 1996;3(4):351–5.
101. Gjurcevic E, Kuzir S, Bazdaric B, Matanovic K, Debelic I, Marino F, et al. New data on Eimeria dicentrarchi (Apicomplexa: Eimeriidae), a common parasite of farmed European sea bass (Dicentrarchus labrax) from the mid-eastern Adriatic. Veterinarski Arhiv. 2017;87(1):77–86.
102. Alvarez‐Pellitero P. M, C., Gonzalez‐Lanza M. Goussia carpelli (Protozoa, Apicomplexa) in cyprinid fish of the Duero basin (NW Spain). Aspects of host‐parasite relationships. Journal of Applied Ichthyology. 1986;2(3):125–30.
103. Lovy J, Friend SE. Intestinal coccidiosis of anadromous and landlocked alewives, Alosa pseudoharengus, caused by Goussia ameliae n. sp. and G. alosii n. sp. (Apicomplexa: Eimeriidae). International Journal for Parasitology: Parasites and Wildlife. 2015;4(2):159–70. doi: 10.1016/j.ijppaw.2015.02.003 25853050
104. Nilsen F. Description of Trichodina hippoglossi n. sp. from farmed Atlantic halibut larvae Hippoglossus hippoglossus. Diseases of Aquatic Organisms. 1995;21:209–14.
105. Kritsky DC, Heckmann R. Species of Dactylogyrus (Monogenoidea: Dactylogyridae) and Trichodina mutabilis (Ciliata) Infesting Koi Carp, Cyprinus carpio, During Mass Mortality at a Commercial Rearing Facility in Utah, U.S.A. Comparative Parasitology. 2002;69(2):217–8.
106. Guillou L, Viprey M, Chambouvet A, Welsh R(M, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology. 2008;10(12):3349–65. doi: 10.1111/j.1462-2920.2008.01731.x 18771501
107. Budischak SA, Hoberg EP, Abrams A, Jolles AE, Ezenwa VO. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Molecular Ecology Resources. 2015;15(5):1112–9. doi: 10.1111/1755-0998.12382 25644900
108. Bittleston LS, Baker CCM, Strominger LB, Pringle A, Pierce NE. Metabarcoding as a tool for investigating arthropod diversity in Nepenthes pitcher plants. Austral Ecology. 2016;41(2):120–32.
109. Avramenko RW, Redman EM, Lewis R, Bichuette MA, Palmeira BM, Yazwinski TA, et al. The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. International Journal for Parasitology. 2017 Nov 1;47(13):893–902. doi: 10.1016/j.ijpara.2017.06.006 28797791
110. Wilcox JJS, Hollocher H. Unprecedented Symbiont Eukaryote Diversity Is Governed by Internal Trophic Webs in a Wild Non-Human Primate. Protist. 2018;169(3):307–20 doi: 10.1016/j.protis.2018.03.001 29803114
111. Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends in Parasitology. 2015;31(10):499–513. doi: 10.1016/j.pt.2015.06.013 26433253
112. Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count? Molecular Ecology Resources. 2013;13(4):620–33. doi: 10.1111/1755-0998.12103 23590207
113. Jorge F, Carretero MA, Roca V, Poulin R, Perera A. What you get is what they have? Detectability of intestinal parasites in reptiles using faeces. Parasitology Research. 2013;112(12):4001–7. doi: 10.1007/s00436-013-3588-8 23999900
114. Gillespie TR. Noninvasive Assessment of Gastrointestinal Parasite Infections in Free-Ranging Primates. International Journal of Primatology. 2006;27(4):1129–43
115. Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology. 2016 Dec 24;16(1):123. doi: 10.1186/s12866-016-0738-z 27342980
116. Thomas AC, Deagle BE, Eveson JP, Harsch CH, Trites AW. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Molecular Ecology Resources. 2016;16(3):714–26. doi: 10.1111/1755-0998.12490 26602877
117. Santamaria M, Fosso B, Consiglio A, De caro G, Grillo G, Licciulli F, et al. Reference databases for taxonomic assignment in metagenomics. Briefings in Bioinformatics. 2012;13(6):682–95. doi: 10.1093/bib/bbs036 22786784
118. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. Journal of Biotechnology. 2017;261:169–76. doi: 10.1016/j.jbiotec.2017.06.1198 28648396
119. Bortolus A. Error Cascades in the Biological Sciences: The Unwanted Consequences of Using Bad Taxonomy in Ecology. Ambio. 2008;37(2):114–9. doi: 10.1579/0044-7447(2008)37[114:ecitbs]2.0.co;2 18488554
120. Kvist S. Barcoding in the dark?: A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Molecular Phylogenetics and Evolution. 2013;69(1):39–45. doi: 10.1016/j.ympev.2013.05.012 23721749
121. Tinsley RC, Owen RW. Studies on Biology of Protopolystoma xenopodis (Monogenoidea)–the oncomiracidium and life-cycle. Parasitology. 1975;71(3):445–63.
122. Buchmann K. Some histochemical characteristics of the mucous microenvironment in four salmonids with different susceptibilities to gyrodactylid infections. Journal of Helminthology. 1998;72(2):101–7
123. Whittington ID, Cribb BW, Hamwood TE, Halliday JA. Host-specificity of monogenean (platyhelminth) parasites: A role for anterior adhesive areas? International Journal for Parasitology. 2000;30(3):305–20. doi: 10.1016/s0020-7519(00)00006-0 10719124
124. Kearn GC. Experiments in host-finding and host-specificity in the monogenean skin parasite Entobdella solaea. Parasitology. 1967;57(3):585–605. doi: 10.1017/s0031182000072450 6069119
125. Buchmann K, Lindenstrøm T. Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology. 2002;32(3):309–19. doi: 10.1016/s0020-7519(01)00332-0 11835971
126. Galaktionov K, Malkova II, Irwin SWB, Saville H, Maguire JG. The structure and formation of metacercarial cysts in the trematode family Microphallidae Travassos 1920. Journal of helminthology. 1997;71(1):13–20. 9166434
127. Poulin R, Cribb TH. Trematode life cycles: short is sweet? Trends in Parasitology. 2002 Apr 1;18(4):176–83 11998706
128. Harder W. Anatomy of fishes. Schweizerbart; 1975. 612 p.
129. Li L, Ali AH, Zhao WT, Lü L, Xu Z. First report on nematode parasite infection in the yellowbar angelfish Pomacanthus maculosus (Perciformes: Pomacanthidae) from the Iraqi coral reef, with description of a new species of Cucullanus (Nematoda: Ascaridida) using the integrated approaches. Parasitology International. 2016;65(6):677–84.
130. Smith JD, Lankester MW. Development of swim bladder nematodes (Cystidicola spp.) in their intermediate hosts. Canadian Journal of Zoology. 1979;57(9):1736–44. 540279
131. Black GA, Lankester MW. Migration and development of swim-bladder nematodes, Cystidicola spp. (Habronematoidea), in their definitive hosts. Canadian journal of Zoology. 1980;58(11):1997–2005.
132. Koie M. The life cycle of Dichelyne (Cucullanellus) minutus (Nematoda: Cucullanidae). Folia Parasitologica. 2001;48(4):304–10. 11817453
133. Køie M. The life-cycle of the flatfish nematode Cucullanus heterochrous. Journal of helminthology. 2001;74(4):323–8.
134. Veciana M, Chaisiri K, Morand S, Ribas A. Aonchotheca yannickchavali n. sp. (Nematoda: Capillariidae) in Bandicota indica (Bechstein, 1800) and Bandicota savilei (Thomas, 1916) (Rodentia: Muridae) collected from Thailand. Agriculture and Natural Resources. 2016;50(6):470–3.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania