#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multi-scale patterns of tick occupancy and abundance across an agricultural landscape in southern Africa


Autoři: Kimberly J. Ledger aff001;  Ryan M. Keenan aff002;  Katherine A. Sayler aff001;  Samantha M. Wisely aff001
Působiště autorů: Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America aff001;  Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222879

Souhrn

Land use influences the prevalence and distribution of ticks due to the intimate relationship of ticks with their environment. This relationship occurs because land use alters two essential tick requirements: vertebrate hosts for blood meals and a suitable microclimate when off-host. Given the risks to human and animal health associated with pathogens transmitted by ticks, there is an ongoing need to understand the impact of environmental drivers on tick distributions. Here, we assessed how landscape features, neighborhood effects, and edges influenced tick occupancy and abundance across an agricultural landscape in southern Africa. We found that Rhipicephalus appendiculatus and Rhipicephalus simus increased in abundance closer to protected savanna, while Haemaphysalis elliptica increased in abundance closer to human habitation. The composition of the landscape surrounding savanna patches also differentially influenced the occupancy of each tick species; H. elliptica was more likely to be found in savanna patches surrounded by subsistence agriculture while R. appendiculatus and R. simus were more likely to be found in savanna surrounded by sugarcane monocultures. At the local scale we found that R. appendiculatus and R. simus avoided savanna edges. The availability of hosts and variation in vegetation structure between commercial agriculture, subsistence agriculture, and savanna likely drove the distribution of ticks at the landscape scale. Understanding how anthropogenic land use influences where ticks occur is useful for land use planning and for assessing public and animal health risks associated with ticks and tick-borne diseases.

Klíčová slova:

Biology and life sciences – Plant science – Organisms – Eukaryota – Plants – Grasses – Animals – Invertebrates – Arthropoda – Social sciences – Medicine and health sciences – Animal types – Zoology – Infectious diseases – Agriculture – Arachnida – Earth sciences – Geography – Ecology and environmental sciences – Plant ecology – Ecology – Terrestrial environments – Species interactions – Crop science – Crops – Habitats – Livestock – Human geography – Land use – Domestic animals – Plant communities – Grasslands – Sugarcane – Ixodes – Ticks – Disease vectors


Zdroje

1. Patz J, Olson S, Uejio C, Gibbs H. Disease Emergence from Global Climate and Land Use Change. Medical Clinics of North America. 2008;92(6):1473–91. doi: 10.1016/j.mcna.2008.07.007 WOS:000261320500012. 19061763

2. Jones B, Grace D, Kock R, Alonso S, Rushton J, Said M, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(21):8399–404. doi: 10.1073/pnas.1208059110 WOS:000320328700031. 23671097

3. Keesing F, Belden L, Daszak P, Dobson A, Harvell C, Holt R, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468(7324):647–52. doi: 10.1038/nature09575 WOS:000284836700031. 21124449

4. de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience-Landmark. 2008;13:6938–46. doi: 10.2741/3200 WOS:000255885000280. 18508706

5. Matson PA, Parton WJ, Power AG, Swift MJ. Agricultural intensification and ecosystem properties. Science. 1997;277(5325):504–9. doi: 10.1126/science.277.5325.504 WOS:A1997XM86700032. 20662149

6. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418(6898):671–7. doi: 10.1038/nature01014 WOS:000177305600053. 12167873

7. Kastner T, Rivas MJI, Koch W, Nonhebel S. Global changes in diets and the consequences for land requirements for food. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(18):6868–72. doi: 10.1073/pnas.1117054109 WOS:000303602100028. 22509032

8. Ottichilo WK, De Leeuw J, Skidmore AK, Prins HHT, Said MY. Population trends of large non-migratory wild herbivores and livestock in the Masai Mara ecosystem, Kenya, between 1977 and 1997. African Journal of Ecology. 2000;38(3):202–16. doi: 10.1046/j.1365-2028.2000.00242.x WOS:000089055000003.

9. Sonenshine DE, Mather TN. Ecological dynamics of tick-borne zoonoses: Oxford University Press; 1994.

10. Horak IG, Heyne H, Williams R, Gallivan GJ, Spickett AM, Bezuidenhout JD, et al. The Ixodid Ticks (Acari: Ixodidae) of Southern Africa: Springer; 2018.

11. Walker AR. Ticks of domestic animals in Africa: a guide to identification of species: Bioscience Reports Edinburgh; 2003.

12. Lounsbury CP. Transmisson of African Coast Fever. Cape of Good Hope1904.

13. Neitz E, WO C. Corridor disease: a fatal form of bovine theileriosis encountered in Zululand. Journal of the South African Veterinary Association. 1955;26(2):79–88.

14. Fivaz BH, Norval RAI, Lawrence JA. Transmission of Theileria parva bovis (Boleni strain) to cattle resistant to the brown ear tick Rhipicephalus appendiculatus (Neumann). Tropical Animal Health and Production. 1989;21(2):129–34. doi: 10.1007/bf02236193 WOS:A1989AA03100007. 2665253

15. Lawrence J, Mackenzie P. Isolation of a non-pathogenic Theileria of cattle transmitted by Rhipicephalus appendiculatus. Zimbabwe Veterinary Journal. 1980;11(3/4):27–35.

16. Matson B. Theileriosis in Rhodesia: 1. A study of diagnostic specimens over two seasons. Journal of the South African Veterinary Association. 1967;38(1):93–102.

17. Montgomery E. On a Tick-borne Gastroenteritis of Sheep and Goats occurring in British East Africa. Journal of Comparative Pathology and Therapeutics. 1917;30(1):28–57.

18. Alexander R, Neitz W. The transmission of louping ill by ticks (Rhipicephalus appendiculatus). 1935.

19. Pretorius AM, Birtles RJ. Rickettsia aeschlimannii: A new pathogenic spotted fever group rickettsia, South Africa. Emerging Infectious Diseases. 2002;8(8):874–. doi: 10.3201/eid0808.020199 WOS:000177240200025. 12141981

20. Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clinical Microbiology Reviews. 2005;18(4):719–+. doi: 10.1128/CMR.18.4.719-756.2005 WOS:000232966100007. 16223955

21. Lounsbury CP. Ticks and African Coast fever. Transvaal Agricultural Journal. 1903;2(5):4–13.

22. Potgieter FT, Vanrensburg L. Isolation of Anaplasma marginal from Rhipicephalus simus males. Onderstepoort Journal of Veterinary Research. 1980;47(4):285–6. WOS:A1980LT40200010. 7231925

23. Potgieter FT, Vanrensburg L. Tick transmission of Anaplasma centrale. Onderstepoort Journal of Veterinary Research. 1987;54(1):5–7. WOS:A1987H411200002. 3587927

24. Anderson JF, Magnarelli LA, Burgdorfer W, Casper EA, Philip RN. Importation into the United States from Africa of Rhipicephalus simus on a Boutonneuse fever patient. American Journal of Tropical Medicine and Hygiene. 1981;30(4):897–9. doi: 10.4269/ajtmh.1981.30.897 WOS:A1981MB81500021. 7258502

25. Uilenberg G, Franssen F, Perie N, Spanjer A. Three groups of Babesia canis distinguished and a proposal for nomenclature. Veterinary Quarterly. 1989;11(1):33–40. doi: 10.1080/01652176.1989.9694194 2655263

26. Gear JHS, Douthwaite M. The Dog Tick Haemaphysalis teachi as a Vector of Tick Typhus. South African Medical Journal. 1938;12(2).

27. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, et al. Update on Tick-Borne Rickettsioses around the World: a Geographic Approach. Clinical Microbiology Reviews. 2013;26(4):657–702. doi: 10.1128/CMR.00032-13 WOS:000325272500001. 24092850

28. Walker JB. The tick vectors of Cowdria ruminantium (Ixodoidea, Ixodidae, genus Amblyomma) and their distribution. Onderstepoort Journal of Veterinary Research. 1987;54(3):353–79. WOS:A1987M626600037. 3329325

29. Raoult D, Fournier PE, Fenollar F, Jensenius M, Prioe T, de Pina JJ, et al. Rickettsia africae, a tick-borne pathogen in travelers to sub-Saharan Africa. New England Journal of Medicine. 2001;344(20):1504–10. doi: 10.1056/NEJM200105173442003 WOS:000168677200003. 11357153

30. Pfaffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. International Journal for Parasitology. 2013;43(12–13):1059–77. doi: 10.1016/j.ijpara.2013.06.009 WOS:000326136400011. 23911308

31. Stafford KC. SURVIVAL OF IMMATURE IXODES-SCAPULARIS (ACARI, IXODIDAE) AT DIFFERENT RELATIVE HUMIDITIES. Journal of Medical Entomology. 1994;31(2):310–4. doi: 10.1093/jmedent/31.2.310 WOS:A1994MZ39400020. 8189424

32. Wilson ML, Dykstra EA, Schmidt BA. Temperature-and humidity-dependent longevity of unfed adult Hyalomma truncatum (Acari: Ixodidae). Journal of medical entomology. 1993;30(2):467–71. doi: 10.1093/jmedent/30.2.467 8459425

33. Guglielmone AA. THE EFFECT OF TEMPERATURE AND HUMIDITY ON DEVELOPMENT AND LONGEVITY OF AMBLYOMMA-TRIGUTTATUM-TRIGUTTATUM (ACARINA, IXODIDAE). Bulletin of Entomological Research. 1992;82(2):203–8. doi: 10.1017/s0007485300051737 WOS:A1992JC72300008.

34. Schwarz A, Maier WA, Kistemann T, Kampen H. Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. International Journal of Hygiene and Environmental Health. 2009;212(1):87–96. doi: 10.1016/j.ijheh.2007.12.001 WOS:000262991100013. 18262840

35. Williams SC, Ward JS. Effects of Japanese Barberry (Ranunculales: Berberidaceae) Removal and Resulting Microclimatic Changes on Ixodes scapularis (Acari: Ixodidae) Abundances in Connecticut, USA. Environmental Entomology. 2010;39(6):1911–21. doi: 10.1603/EN10131 WOS:000286125700025. 22182557

36. Lindstrom A, Jaenson TGT. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in Southern Sweden. Journal of Medical Entomology. 2003;40(4):375–8. doi: 10.1603/0022-2585-40.4.375 WOS:000184410900001. 14680099

37. Fielden LJ, Rechav Y. Survival of six species of African ticks in relation to saturation deficits. Experimental & Applied Acarology. 1996;20(11):625–37. doi: 10.1007/bf00053326 WOS:A1996WA50100003.

38. Norval R. Studies on the ecology of the tick Amblyomma hebraeum Koch in the Eastern Cape Province of South Africa. II. Survival and development. The Journal of parasitology. 1977:740–7. 577931

39. Madder M, Speybroeck N, Bilounga A, Helleputte D, Berkvens D. Survival of unfed Rhipicephalus appendiculatus and Rhipicephalus zambeziensis adults. Medical and Veterinary Entomology. 2005;19(3):245–50. doi: 10.1111/j.1365-2915.2005.00566.x WOS:000231510000002. 16134972

40. Estrada-Pena A. The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography. 2003;26(5):661–71. doi: 10.1034/j.1600-0587.2003.03530.x WOS:000186985000012.

41. Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, et al. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasites & Vectors. 2016;9. doi: 10.1186/s13071-016-1296-9 WOS:000368410000001. 26767788

42. Ferrell AM, Brinkerhoff RJ. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi. International Journal of Environmental Research and Public Health. 2018;15(4). doi: 10.3390/ijerph15040737 WOS:000434868800176. 29649156

43. Allan BF, Keesing F, Ostfeld RS. Effect of forest fragmentation on Lyme disease risk. Conservation Biology. 2003;17(1):267–72. doi: 10.1046/j.1523-1739.2003.01260.x WOS:000180846200031.

44. Dunning JB, Danielson BJ, Pulliam HR. Ecological processes that affect populations in complex landscapes. Oikos. 1992;65(1):169–75. doi: 10.2307/3544901 WOS:A1992JH67600021.

45. Tack W, Madder M, Baeten L, Vanhellemont M, Gruwez R, Verheyen K. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. Forest Ecology and Management. 2012;265:30–6. doi: 10.1016/j.foreco.2011.10.028 WOS:000299981900004.

46. Finch C, Al-Damluji MS, Krause PJ, Niccolai L, Steeves T, O'Keefe CF, et al. Integrated Assessment of Behavioral and Environmental Risk Factors for Lyme Disease Infection on Block Island, Rhode Island. Plos One. 2014;9(1). doi: 10.1371/journal.pone.0084758 WOS:000329862500161. 24416278

47. Horobik V, Keesing F, Ostfeld RS. Abundance and Borrelia burgdorferi-infection prevalence of nymphal Ixodes scapularis ticks along forest-field edges. Ecohealth. 2006;3(4):262–8. doi: 10.1007/s10393-006-0065-1 WOS:000244439500006.

48. Daniel M, Dusbabek F. Micrometeorological and microhabitat factors affecting maintenance and dissemination of tick-borne diseases in the environment. Oxford University Press New York, NY, Oxford; 1994. p. 138.

49. Civitello DJ, Flory SL, Clay K. Exotic grass invasion reduces survival of Amblyomma americanum and Dermacentor variabilis ticks (Acari: Ixodidae). Journal of Medical Entomology. 2008;45(5):867–72. doi: 10.1603/0022-2585(2008)45[867:egirso]2.0.co;2 WOS:000259099000006. 18826028

50. Reynolds C, Fletcher RJ, Carneiro CM, Jennings N, Ke A, LaScaleia MC, et al. Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landscape Ecology. 2018;33(2):241–55. doi: 10.1007/s10980-017-0595-7 WOS:000424875100006.

51. Hackel JD. Rural change and nature conservation in Africa: a case study from Swaziland. Human Ecology. 1993;21(3):295–312. doi: 10.1007/bf00891541 WOS:A1993LX63500004.

52. Mijinyawa Y, Dlamini B. Livestock and poultry wastes management in Swaziland. Livestock Research for Rural Development 2006;18(6).

53. Goudie A. The atlas of Swaziland: Swaziland National Trust Commission; 1983.

54. Monadjem A. Threatened vertebrates of Swaziland: Swaziland red data book: fishes, amphibians, reptiles, birds and mammals: Ministry of Tourism, Environment and Communications; 2003.

55. D. E. The supply and demand of sugar in Swaziland. United States department of agriculture foreign agricultural service GAIN report2015.

56. Bailey KM, McCleery RA, Binford MW, Zweig C. Land-cover change within and around protected areas in a biodiversity hotspot. Journal of Land Use Science. 2016;11(2):154–76. doi: 10.1080/1747423x.2015.1086905 WOS:000404054800002.

57. Fortunate M. Strengthening the National Protected Areas Systems in Swaziland Project: Swaziland Land Cover, Land Cover Change Analysis and Vegetation types for 1990, 2000, 2010 and 2015.: United Nations Development Programme; 2016.

58. Mucina L, Rutherford MC. The vegetation of South Africa, Lesotho and Swaziland: South African National Biodiversity Institute; 2006.

59. Mamba M. Influence of sugarcane growth stages on population dynamics and community structure of small mammals in sugarcane estates, northeastern Eswatini. Kwaluseni, Eswatini: University of Eswatini; 2019.

60. McCleery R, Monadjem A, Baiser B, Fletcher R, Vickers K, Kruger L. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biological Conservation. 2018;226:54–62. doi: 10.1016/j.biocon.2018.07.020 WOS:000445992900007.

61. Ginsberg HS, Zhioua E, Mitra S, Fischer J, Buckley PA, Verret F, et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environmental Entomology. 2004;33(5):1266–73. doi: 10.1603/0046-225x-33.5.1266 WOS:000224606000018.

62. Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, et al. Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Iodidae) in the United States. Journal of Medical Entomology. 2006;43(2):166–76. doi: 10.1603/0022-2585(2006)043[0166:spohis]2.0.co;2 WOS:000236184600006. 16619595

63. Walker AR, Alberdi MP, Urquhart KA, Rose H. Risk factors in habitats of the tick Ixodes ricinus influencing human exposure to Ehrlichia phagocytophila bacteria. Medical and Veterinary Entomology. 2001;15(1):40–9. doi: 10.1046/j.1365-2915.2001.00271.x WOS:000167821600005. 11297100

64. Barandika JF, Berriatua E, Barral M, Juste RA, Anda P, Garcia-Perez AL. Risk factors associated with ixodid tick species distributions in the Basque region in Spain. Medical and Veterinary Entomology. 2006;20(2):177–88. doi: 10.1111/j.1365-2915.2006.00619.x WOS:000239629100004. 16796614

65. Walker JB, Keirans JE, Horak IG. The genus Rhipicephalus (Acari, Ixodidae): a guide to the brown ticks of the world: Cambridge University Press; 2005.

66. Cliff AD, Ord JK. Spatial processes: methods and applications. Pion, London, UK. 1981.

67. Bjornstad ON, Falck W. Nonparametric spatial covariance functions: Estimation and testing. Environmental and Ecological Statistics. 2001;8(1):53–70. doi: 10.1023/a:1009601932481 WOS:000167427900004.

68. Jackson HB, Fahrig L. Are ecologists conducting research at the optimal scale? Global Ecology and Biogeography. 2015;24(1):52–63. doi: 10.1111/geb.12233 WOS:000345980300005.

69. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution. 2009;24(3):127–35. doi: 10.1016/j.tree.2008.10.008 WOS:000264615200003. 19185386

70. Hurvich CM, Tsai CL. Regression and time-series model selection in small samples. Biometrika. 1989;76(2):297–307. doi: 10.1093/biomet/76.2.297 WOS:A1989AE13400012.

71. Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67(1):1–48. WOS:000365981400001.

72. Zar JH. Biostatistical Analysis: Prentice Hall; 2010.

73. Barton K. MuMIn: multi-model inference. http://r-forger-project.org/projects/mumin/. 2009.

74. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution. 2013;4(2):133–42. doi: 10.1111/j.2041-210x.2012.00261.x WOS:000314974800004.

75. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83(8):2248–55. doi: 10.2307/3072056 WOS:000177434200019.

76. Kéry M, Royle JA. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1: Prelude and Static Models: Academic Press; 2015.

77. MacKenzie DI, Bailey LL. Assessing the fit of site-occupancy models. Journal of Agricultural Biological and Environmental Statistics. 2004;9(3):300–18. doi: 10.1198/108571104x3361 WOS:000224036400004.

78. Wright WJ, Irvine KM, Rodhouse TJ. A goodness-of-fit test for occupancy models with correlated within-season revisits. Ecology and Evolution. 2016;6(15):5404–15. doi: 10.1002/ece3.2292 WOS:000381216300024. 27551392

79. Team RC. R: A language and environment for statistical computing. 2013.

80. Cully JF. Lone star tick abundance, fire, and bison grazing in tallgrass prairie. Journal of Range Management. 1999;52(2):139–44. doi: 10.2307/4003507 WOS:000079521600007.

81. Gordon IJ. What is the future for wild, large herbivores in human-modified agricultural landscapes? Wildlife Biology. 2009;15(1):1–9. doi: 10.2981/06-087 WOS:000266075200001.

82. Du Toit JT, Cumming DHM. Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodiversity and Conservation. 1999;8(12):1643–61. doi: 10.1023/a:1008959721342 WOS:000084982500004.

83. Ries L, Fletcher RJ, Battin J, Sisk TD. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annual Review of Ecology Evolution and Systematics. 2004;35:491–522. doi: 10.1146/annurev.ecolsys.35.112202.130148 WOS:000226244100018.

84. Pietzsch ME, Medlock JM, Jones L, Avenell D, Abbott J, Harding P, et al. Distribution of Ixodes ricinus in the British Isles: investigation of historical records. Medical and Veterinary Entomology. 2005;19(3):306–14. doi: 10.1111/j.1365-2915.2005.00575.x WOS:000231510000009. 16134979

85. Angelstam P. Conservation of communities—the importance of edges, surroundings and landscape mosaic structure. Ecological principles of nature conservation: Springer; 1992. p. 9–70.

86. Bayne EM, Hobson KA. The effects of habitat fragmentation by forestry and agriculture on the abundance of small mammals in the southern boreal mixedwood forest. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 1998;76(1):62–9. doi: 10.1139/cjz-76-1-62 WOS:000072517100009.

87. Maupin GO, Fish D, Zultowsky J, Campos EG, Piesman J. Landscape ecology of Lyme disease in a residential area of Westchester County, New York. American Journal of Epidemiology. 1991;133(11):1105–13. doi: 10.1093/oxfordjournals.aje.a115823 WOS:A1991FP76200004. 2035514

88. Stafford KC, Magnarelli LA. Spatial and temporal patterns of Ixodes scapularis (Acari, Ixodidae) in southeastern Connecticut. Journal of Medical Entomology. 1993;30(4):762–71. doi: 10.1093/jmedent/30.4.762 WOS:A1993LL09300014. 8360900

89. Burke DM, Nol E. Influence of food abundance, nest-site habitat, and forest fragmentation on breeding ovenbirds. Auk. 1998;115(1):96–104. doi: 10.2307/4089115 WOS:000071487100011.

90. Zieger U, Horak IG, Cauldwell AE. Dynamics of free-living ixodid ticks on a game ranch in the Central Province, Zambia. Onderstepoort Journal of Veterinary Research. 1998;65(1):49–59. WOS:000073699600007. 9629590

91. Spickett AM, Gallivan GJ, Horak IG. The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988–2002). Part II. Rhipicephalus appendiculatus and Rhipicephalus zambeziensis. Onderstepoort Journal of Veterinary Research. 2011;78(1):18–26. doi: 10.4102/ojvr.v78i1.233 WOS:000307863400003. 23327205

92. Gallivan GJ, Spickett A, Heyne H, Spickett AM, Horak IG. The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988–2002). Part III. The less commonly collected species. Onderstepoort Journal of Veterinary Research. 2011;78(1):27–35. doi: 10.4102/ojvr.v78i1.41 WOS:000307863400004. 23327206

93. Horak IG, Braack LEO, Fourie LJ, Walker JB. Parasites of domestic and wild animals in South Africa. XXXVIII. Ixodid ticks collected from 23 wild carnivore species. Onderstepoort Journal of Veterinary Research. 2000;67(4):239–50. WOS:000167303800004. 11206391

94. Horak IG, Emslie FR, Spickett AM. Parasites of domestic and wild animals in South Africa. XL. Ticks on dogs belonging to people in rural communities and carnivore ticks on the vegetation. Onderstepoort Journal of Veterinary Research. 2001;68(2):135–41. WOS:000170857300008. 11585091

95. Horak IG, Gallivan GJ, Spickett AM, Potgieter ALF. Effect of burning on the numbers of questing ticks collected by dragging. Onderstepoort Journal of Veterinary Research. 2006;73(3):163–74. WOS:000241460800001. 17058438

96. Norval R. Studies on the biology and ecology of Amblyomma hebraeum Koch, 1844 and other tick species of the eastern Cape. Grahamstown, South Africa: Rhodes University; 1974.

97. Petney TN, Horak IG. THE EFFECT OF DIPPING ON PARASITIC AND FREE-LIVING POPULATIONS OF AMBLYOMMA-HEBRAEUM ON A FARM AND ON AN ADJACENT NATURE RESERVE. Onderstepoort Journal of Veterinary Research. 1987;54(3):529–33. WOS:A1987M626600060. 3448583

98. Horak IG, Gallivan GJ, Spickett AM. The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988–2002). Part I. Total ticks, Amblyomma hebraeum and Rhipicephalus decoloratus. Onderstepoort Journal of Veterinary Research. 2011;78(1):8–17. doi: 10.4102/ojvr.v78i1.32 WOS:000307863400002. 23327204

99. Bryson NR, Horak IG, Venter EH, Yunker CE. Collection of free-living nymphs and adults of Amblyomma hebraeum (Acari: Ixodidae) with pheromone/carbon dioxide traps at 5 different ecological sites in heartwater endemic regions of South Africa. Experimental and Applied Acarology. 2000;24(12):971–82. doi: 10.1023/a:1010639113793 WOS:000167823200009. 11354624

100. Vanwambeke SO, Sumilo D, Bormane A, Lambin EF, Randolph SE. Landscape Predictors of Tick-Borne Encephalitis in Latvia: Land Cover, Land Use, and Land Ownership. Vector-Borne and Zoonotic Diseases. 2010;10(5):497–506. doi: 10.1089/vbz.2009.0116 WOS:000278980100011. 19877818

101. Halos L, Bord S, Cotte V, Gasqui P, Abrial D, Barnouin J, et al. Ecological Factors Characterizing the Prevalence of Bacterial Tick-Borne Pathogens in Ixodes ricinus Ticks in Pastures and Woodlands. Applied and Environmental Microbiology. 2010;76(13):4413–20. doi: 10.1128/AEM.00610-10 WOS:000279082800034. 20453131

102. Linard C, Lamarque P, Heyman P, Ducoffre G, Luyasu V, Tersago K, et al. Determinants of the geographic distribution of Puumala virus and Lyme borreliosis infections in Belgium. International Journal of Health Geographics. 2007;6. doi: 10.1186/1476-072x-6-15 WOS:000258121200001. 17474974

103. Holmes JC. Parasites as threats to biodiversity in shrinking ecosystems. Biodiversity and Conservation. 1996;5(8):975–83. doi: 10.1007/bf00054415 WOS:A1996VD25900004.

104. Levins R, Awerbuch T, Brinkmann U, Eckardt I, Epstein P, Makhoul N, et al. The emergence of new diseases. American Scientist. 1994;82(1):52–60.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#