Loss of prostatic acid phosphatase and α-synuclein cause motor circuit degeneration without altering cerebellar patterning
Autoři:
Maryam Rahimi-Balaei aff001; Matthew Buchok aff001; Pirkko Vihko aff003; Fiona E. Parkinson aff004; Hassan Marzban aff001
Působiště autorů:
Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
aff001; The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
aff002; Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
aff003; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222234
Souhrn
Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some diseases such as prostate cancer. PAP is also present in the central nervous system. In this study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is indicated that mice deficient in transmembrane PAP display neurological alterations. By using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cortex development appears to be normal. Compartmentation genes expression such as zebrin II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal cerebellum. These data indicate that although aggregation of PAP and SNCA causes severe neurodegenerative diseases, PAP -/- with absence of the Snca does not appear to interrupt the cerebellar architecture development and zone and stripe pattern formation. These findings question the physiological and pathological role of SNCA and PAP during cerebellar development or suggest existence of the possible compensatory mechanisms in the absence of these genes.
Zdroje
1. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Reviews Genetics 7: 306. 16543934
2. Gamez-Valero A, Beyer K (2018) Alternative Splicing of Alpha- and Beta-Synuclein Genes Plays Differential Roles in Synucleinopathies. Genes (Basel) 9.
3. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. Journal of Neuroscience 8: 2804–2815. 3411354
4. Tofaris G, Spillantini M (2007) Physiological and pathological properties of α-synuclein. Cellular and molecular life sciences 64: 2194–2201. 17605001
5. Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of neuroscience research 58: 120–129. 10491577
6. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, et al. (1995) The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14: 467–475. 7857654
7. Iwatsubo T (2003) Aggregation of α-synuclein in the pathogenesis of Parkinson’s disease. Journal of neurology 250: iii11–iii14. 14579119
8. Rogers D, Schor NF (2010) The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 67: 151–158.
9. Raghavan R, de Kruijff L, Sterrenburg MD, Rogers BB, Hladik CL, et al. (2004) Alpha-synuclein expression in the developing human brain. Pediatric and Developmental Pathology 7: 506–516. 15547775
10. Zhong S-c, Luo X, Chen X-s, Cai Q-y, Liu J, et al. (2010) Expression and subcellular location of alpha-synuclein during mouse-embryonic development. Cellular and molecular neurobiology 30: 469–482. doi: 10.1007/s10571-009-9473-4 19885730
11. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. Journal of Neuroscience 22: 8797–8807. 12388586
12. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, et al. (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60: 111–122. doi: 10.1016/j.neuron.2008.08.024 18940592
13. Zelivianski S, Comeau D, Lin M-F (1998) Cloning and analysis of the promoter activity of the human prostatic acid phosphatase gene. Biochemical and biophysical research communications 245: 108–112. 9535792
14. Veeramani S, Yuan T-C, Chen S-J, Lin F-F, Petersen JE, et al. (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocrine-Related Cancer 12: 805–822. 16322323
15. Quintero IB, Araujo CL, Pulkka AE, Wirkkala RS, Herrala AM, et al. (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer research 67: 6549–6554. 17638863
16. Kong H-Y, Lee H-J, Byun J-H (2011) Roles of prostatic acid phosphatase in prostate cancer. Journal of Life Science 21: 893–900.
17. Whitesel JA, Donohue RE, Mani JH, Mohr S, Scanavino DJ, et al. (1984) Acid phosphatase: its influence on the management of carcinoma of the prostate. The Journal of urology 131: 70–71. 6690751
18. Araujo CL, Vihko PT (2013) Structure of Acid phosphatases. Methods Mol Biol 1053: 155–166. doi: 10.1007/978-1-62703-562-0_11 23860654
19. Azumi N, Traweek ST, Battifora H (1991) Prostatic acid phosphatase in carcinoid tumors. Immunohistochemical and immunoblot studies. The American journal of surgical pathology 15: 785–790. 1712549
20. Hsing AW, Chokkalingam AP (2006) Prostate cancer epidemiology. Front Biosci 11: 1388–1413. 16368524
21. Nousiainen HO, Quintero IB, Myohanen TT, Voikar V, Mijatovic J, et al. (2014) Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations. PLoS One 9: e97851. doi: 10.1371/journal.pone.0097851 24846136
22. Bianco CL, Ridet J, Schneider B, Deglon N, Aebischer P (2002) α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proceedings of the National Academy of Sciences 99: 10813–10818.
23. Bailey K, Balaei MR, Mannan A, Del Bigio MR, Marzban H (2014) Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax-naked-ataxia mutant mouse). PloS one 9: e94327. doi: 10.1371/journal.pone.0094327 24722417
24. Bailey K, Rahimi Balaei M, Mehdizadeh M, Marzban H (2013) Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. Cerebellum 12: 870–881. doi: 10.1007/s12311-013-0502-y 23780826
25. Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, et al. (2016) Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse. Int J Mol Sci 17.
26. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291: 538–552. 2329190
27. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, et al. (2003) Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. Journal of Neuroscience 23: 3469–3477. 12716955
28. Marzban H, Kim CT, Doorn D, Chung SH, Hawkes R (2008) A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen. Neuroscience 153: 1190–1201. doi: 10.1016/j.neuroscience.2008.02.036 18455884
29. Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50: 235–244. 11799142
30. Marzban H, Hawkes R (2011) On the architecture of the posterior zone of the cerebellum. Cerebellum 10: 422–434. doi: 10.1007/s12311-010-0208-3 20838950
31. Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho W-H, et al. (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239–252. 10707987
32. Crosiers D, Theuns J, Cras P, Van Broeckhoven C (2011) Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42: 131–141. doi: 10.1016/j.jchemneu.2011.07.003 21810464
33. Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, et al. (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein. Proceedings of the National Academy of Sciences 102: 3413–3418.
34. Dauer W, Kholodilov N, Vila M, Trillat A-C, Goodchild R, et al. (2002) Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences 99: 14524–14529.
35. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, et al. (2006) Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiology of disease 21: 541–548. 16298531
36. Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, et al. (2008) Isolation and characterization of neural crest stem cells derived from in vitro–differentiated human embryonic stem cells. Stem cells and development 18: 1059–1071.
37. Bernabeu RO, Longo FM (2010) The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC neuroscience 11: 136. doi: 10.1186/1471-2202-11-136 20961458
38. Dechant G, Barde Y-A (2002) The neurotrophin receptor p75 NTR: novel functions and implications for diseases of the nervous system. Nature neuroscience 5: 1131. 12404007
39. Rahimi-Balaei M, Jiao X, Shabanipour S, Dixit R, Schuurmans C, et al. (2018) Zebrin II Is Ectopically Expressed in Microglia in the Cerebellum of Neurogenin 2 Null Mice. The Cerebellum: 1–11. doi: 10.1007/s12311-018-0919-4 29349629
40. Afshar P, Ashtari N, Jiao X, Rahimi-Balaei M, Zhang X, et al. (2017) Overexpression of Human SOD1 Leads to Discrete Defects in the Cerebellar Architecture in the Mouse. Frontiers in neuroanatomy 11: 22. doi: 10.3389/fnana.2017.00022 28424594
41. Sarna JR, Marzban H, Watanabe M, Hawkes R (2006) Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. Journal of Comparative Neurology 496: 303–313. 16566000
42. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, et al. (2003) Patterned Purkinje cell degeneration in mouse models of Niemann‐Pick type C disease. Journal of Comparative Neurology 456: 279–291. 12528192
43. Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in the cerebellum. Progress in neurobiology 70: 473–507. 14568361
44. Armstrong CL, Krueger‐Naug AM, Currie RW, Hawkes R (2000) Constitutive expression of the 25‐kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. Journal of Comparative Neurology 416: 383–397. 10602096
45. Marzban H, Chung S, Watanabe M, Hawkes R (2007) Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 502: 857–871. 17436294
46. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R (2001) Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol 429: 7–21. 11086286
47. Vastagh C, Vig J, Hamori J, Takacs J (2005) Delayed postnatal settlement of cerebellar Purkinje cells in vermal lobules VI and VII of the mouse. Anat Embryol (Berl) 209: 471–484.
48. Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55: 353–364. 17678850
49. Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. The Journal of clinical investigation 120: 3760–3772. doi: 10.1172/JCI42843 21041958
50. Knyihár-Csillik E, Bezzegh A, Böti S, Csillik B (1986) Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons. Journal of Histochemistry & Cytochemistry 34: 363–371.
51. Silverman JD, Kruger L (1988) Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents. Somatosensory research 5: 219–246. 3128853
52. Watson RA, Tang D (1980) The predictive value of prostatic acid phosphatase as a screening test for prostatic cancer. New England Journal of Medicine 303: 497–499. 7393290
53. Dattoli M, Wallner K, True L, Sorace R, Koval J, et al. (1999) Prognostic role of serum prostatic acid phosphatase for 103Pd-based radiation for prostatic carcinoma. International Journal of Radiation Oncology* Biology* Physics 45: 853–856.
54. Hurt JK, Coleman JL, Fitzpatrick BJ, Taylor-Blake B, Bridges AS, et al. (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine. PLoS One 7: e48562. doi: 10.1371/journal.pone.0048562 23119057
55. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochemistry international 40: 493–504. 11850106
56. Gibson GE, Blass JP (2007) Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxidants & redox signaling 9: 1605–1620.
57. Sang S, Pan X, Chen Z, Zeng F, Pan S, et al. (2018) Thiamine diphosphate reduction strongly correlates with brain glucose hypometabolism in Alzheimer’s disease, whereas amyloid deposition does not. Alzheimer's research & therapy 10: 26.
58. Zimmermann H (2009) Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal 5: 273–275. doi: 10.1007/s11302-009-9157-z 19322680
59. Yegutkin GG, Auvinen K, Karikoski M, Rantakari P, Gerke H, et al. (2014) Consequences of the lack of CD73 and prostatic acid phosphatase in the lymphoid organs. Mediators Inflamm 2014: 485743. doi: 10.1155/2014/485743 25242869
60. Minelli A, Bellezza I, Tucci A, Rambotti MG, Conte C, et al. (2009) Differential involvement of reactive oxygen species and nucleoside transporters in cytotoxicity induced by two adenosine analogues in human prostate cancer cells. Prostate 69: 538–547. doi: 10.1002/pros.20900 19107848
61. Minelli A, Bellezza I, Conte C, Culig Z (2009) Oxidative stress-related aging: A role for prostate cancer? Biochim Biophys Acta 1795: 83–91. doi: 10.1016/j.bbcan.2008.11.001 19121370
62. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC neuroscience 2: 11. doi: 10.1186/1471-2202-2-11 11591219
63. Vihko PT, Quintero I, Rönkä AE, Herrala A, Jäntti P, et al. (2005) Prostatic acid phosphatase (PAP) is PI (3) P-phosphatase and its inactivation leads to change of cell polarity and invasive prostate cancer. AACR.
64. Quintero IB, Herrala AM, Araujo CL, Pulkka AE, Hautaniemi S, et al. (2013) Transmembrane prostatic acid phosphatase (TMPAP) interacts with snapin and deficient mice develop prostate adenocarcinoma. PLoS One 8: e73072. doi: 10.1371/journal.pone.0073072 24039861
65. Kim JY, Marzban H, Chung SH, Watanabe M, Eisenman LM, et al. (2009) Purkinje cell compartmentation of the cerebellum of microchiropteran bats. J Comp Neurol 517: 193–209. doi: 10.1002/cne.22147 19731335
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania