Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections
Autoři:
Theresa Schwaiger aff001; Julia Sehl aff001; Claudia Karte aff003; Alexander Schäfer aff004; Jane Hühr aff004; Thomas C. Mettenleiter aff002; Charlotte Schröder aff001; Bernd Köllner aff004; Reiner Ulrich aff001; Ulrike Blohm aff004
Působiště autorů:
Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
aff001; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
aff002; Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
aff003; Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
aff004; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222943
Souhrn
Pigs are anatomically, genetically and physiologically comparable to humans and represent a natural host for influenza A virus (IAV) infections. Thus, pigs may represent a relevant biomedical model for human IAV infections. We set out to investigate the systemic as well as the local immune response in pigs upon two subsequent intranasal infections with IAV H1N1pdm09. We detected decreasing numbers of peripheral blood lymphocytes after the first infection. The simultaneous increase in the frequencies of proliferating cells correlated with an increase in infiltrating leukocytes in the lung. Enhanced perforin expression in αβ and γδ T cells in the respiratory tract indicated a cytotoxic T cell response restricted to the route of virus entry such as the nose, the lung and the bronchoalveolar lavage. Simultaneously, increasing frequencies of CD8αα expressing αβ T cells were observed rapidly after the first infection, which may have inhibited uncontrolled inflammation in the respiratory tract. Taking together, the results of this study demonstrate that experimental IAV infection in pigs mimics major characteristics of human seasonal IAV infections.
Klíčová slova:
Biology and life sciences – Cell biology – Organisms – Eukaryota – Animals – Cellular types – Animal cells – Anatomy – Medicine and health sciences – Microbiology – Medical microbiology – Microbial pathogens – Pathology and laboratory medicine – Pathogens – Vertebrates – Amniotes – Mammals – Viral pathogens – Viruses – RNA viruses – Immunology – Immune response – Pulmonology – Respiratory infections – Blood cells – White blood cells – T cells – Cytotoxic T cells – Immune cells – Orthomyxoviruses – Influenza viruses – Influenza A virus – Head – Face – Swine – Lymphatic system – Lymph nodes – Nose
Zdroje
1. Glezen WP. Emerging Infections: Pandemic Influenza. Epidemiologic Reviews. 1996;18(1):64–76. doi: 10.1093/oxfordjournals.epirev.a017917 8877331
2. Jester B, Uyeki T, Jernigan D. Readiness for Responding to a Severe Pandemic 100 Years After 1918. American Journal of Epidemiology. 2018;187(12):2596–602. doi: 10.1093/aje/kwy165 30102376
3. Kilbourne ED. Influenza pandemics of the 20th century. Emerging infectious diseases. 2006;12(1):9–14. doi: 10.3201/eid1201.051254 16494710.
4. Nelson MI, Gramer MR, Vincent AL, Holmes EC. Global transmission of influenza viruses from humans to swine. The Journal of general virology. 2012;93(Pt 10):2195–203. doi: 10.1099/vir.0.044974-0 22791604; PubMed Central PMCID: PMC3541789.
5. Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface. Trends in Microbiology. 2015;23(3):142–53. doi: 10.1016/j.tim.2014.12.002 25564096
6. Nelson MI, Wentworth DE, Culhane MR, Vincent AL, Viboud C, LaPointe MP, et al. Introductions and evolution of human-origin seasonal influenza a viruses in multinational swine populations. Journal of virology. 2014;88(17):10110–9. doi: 10.1128/JVI.01080-14 24965467; PubMed Central PMCID: PMC4136342.
7. Imai M, Kawaoka Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Current opinion in virology. 2012;2(2):160–7. doi: 10.1016/j.coviro.2012.03.003 22445963.
8. Rajao DS, Vincent AL. Swine as a Model for Influenza A Virus Infection and Immunity. ILAR Journal. 2015;56(1):44–52. doi: 10.1093/ilar/ilv002 25991697
9. Terebuh P, Olsen CW, Wright J, Klimov A, Karasin A, Todd K, et al. Transmission of influenza A viruses between pigs and people, Iowa, 2002–2004. Influenza and other respiratory viruses. 2010;4(6):387–96. doi: 10.1111/j.1750-2659.2010.00175.x 20958933; PubMed Central PMCID: PMC4634614.
10. Larsen DL, Karasin A, Zuckermann F, Olsen CW. Systemic and mucosal immune responses to H1N1 influenza virus infection in pigs. Veterinary Microbiology. 2000;74(1):117–31. https://doi.org/10.1016/S0378-1135(00)00172-3.
11. Heinen PP, van Nieuwstadt AP, de Boer-Luijtze EA, Bianchi ATJ. Analysis of the quality of protection induced by a porcine influenza A vaccine to challenge with an H3N2 virus. Veterinary Immunology and Immunopathology. 2001;82(1–2):39–56. doi: 10.1016/s0165-2427(01)00342-7 11557293
12. Weaver EA, Rubrum AM, Webby RJ, Barry MA. Protection against Divergent Influenza H1N1 Virus by a Centralized Influenza Hemagglutinin. PLoS ONE. 2011;6(3):e18314. doi: 10.1371/journal.pone.0018314 PubMed PMID: PMC3065472. 21464940
13. Kim W-I, Wu W-H, Janke B, Yoon K-J. Characterization of the humoral immune response of experimentally infected and vaccinated pigs to swine influenza viral proteins. Archives of Virology. 2006;151(1):23–36. doi: 10.1007/s00705-005-0615-9 16132180
14. Heinen PP, de Boer-Luijtze EA, Bianchi ATJ. Respiratory and systemic humoral and cellular immune responses of pigs to a heterosubtypic influenza A virus infection. Journal of General Virology. 2001;82(11):2697–707. doi: 10.1099/0022-1317-82-11-2697 11602782
15. Kappes MA, Sandbulte MR, Platt R, Wang C, Lager KM, Henningson JN, et al. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs. Vaccine. 2012;30(2):280–8. doi: 10.1016/j.vaccine.2011.10.098 22067263
16. Loving CL, Vincent AL, Pena L, Perez DR. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs. Vaccine. 2012;30(40):5830–8. doi: 10.1016/j.vaccine.2012.07.033 22835742
17. Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, et al. Swine Influenza H1N1 Virus Induces Acute Inflammatory Immune Responses in Pig Lungs: a Potential Animal Model for Human H1N1 Influenza Virus. Journal of virology. 2010;84(21):11210–8. doi: 10.1128/JVI.01211-10 20719941
18. Talker SC, Koinig HC, Stadler M, Graage R, Klingler E, Ladinig A, et al. Magnitude and kinetics of multifunctional CD4+ and CD8β+ T cells in pigs infected with swine influenza A virus. Veterinary research. 2015;46(1):52–. doi: 10.1186/s13567-015-0182-3 25971313.
19. Talker SC, Stadler M, Koinig HC, Mair KH, Rodríguez-Gómez IM, Graage R, et al. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung. Journal of virology. 2016;90(20):9364–82. doi: 10.1128/JVI.01211-16 PubMed PMID: PMC5044846. 27512056
20. Quinones-Parra S, Grant E, Loh L, Nguyen TH, Campbell KA, Tong SY, et al. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci U S A. 2014;111(3):1049–54. Epub 2014/01/08. doi: 10.1073/pnas.1322229111 24395804; PubMed Central PMCID: PMCPMC3903243.
21. van de Sandt CE, Kreijtz JH, de Mutsert G, Geelhoed-Mieras MM, Hillaire ML, Vogelzang-van Trierum SE, et al. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. Journal of virology. 2014;88(3):1684–93. Epub 2013/11/22. doi: 10.1128/JVI.02843-13 24257602; PubMed Central PMCID: PMCPMC3911609.
22. Wang Z, Wan Y, Qiu C, Quinones-Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells. Nat Commun. 2015;6:6833. Epub 2015/05/15. doi: 10.1038/ncomms7833 25967273; PubMed Central PMCID: PMCPMC4479016.
23. Pizzolla A, Nguyen THO, Sant S, Jaffar J, Loudovaris T, Mannering SI, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. The Journal of Clinical Investigation. 2018;128(2):721–33. doi: 10.1172/JCI96957 29309047
24. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–12. doi: 10.1038/nm.3350 http://www.nature.com/nm/journal/v19/n10/abs/nm.3350.html#supplementary-information. 24056771
25. Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EBM, von der T, et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. The Journal of Clinical Investigation. 2011;121(6):2254–63. doi: 10.1172/JCI44675 21537083
26. Pescovitz MD, Lunney JK, Sachs DH. Murine anti-swine T4 and T8 monoclonal antibodies: Distribution and effects on proliferative and cytotoxic T cells. Journal of Immunology. 1985;134(1):37–44.
27. Šinkora M, Butler JE. The ontogeny of the porcine immune system. Developmental & Comparative Immunology. 2009;33(3):273–83. https://doi.org/10.1016/j.dci.2008.07.011.
28. Ortolani C, Forti E, Radin E, Cibin R, Cossarizza A. Cytofluorometric Identification of Two Populations of Double Positive (CD4+,CD8+) T Lymphocytes in Human Peripheral Blood. Biochemical and Biophysical Research Communications. 1993;191(2):601–9. doi: 10.1006/bbrc.1993.1260 8461016
29. Carding SR, Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nature Reviews Immunology. 2002;2:336. doi: 10.1038/nri797 12033739
30. Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE, Rehermann B. Peripheral CD4+CD8+ T cells are differentiated effector memory cells with antiviral functions. 2004;104(2):478–86. doi: 10.1182/blood-2003-12-4395 %J Blood
31. Brandes M, Willimann K, Moser B. Professional Antigen-Presentation Function by Human γδ T Cells. 2005;309(5732):264–8. doi: 10.1126/science.1110267 %J Science
32. Takamatsu HH, Denyer MS, Wileman TE. A sub-population of circulating porcine γδ T cells can act as professional antigen presenting cells. Veterinary Immunology and Immunopathology. 2002;87(3):223–4. https://doi.org/10.1016/S0165-2427(02)00083-1.
33. Spearman C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. British Journal of Psychology, 1904–1920. 1908;2(3):227–42. doi: 10.1111/j.2044-8295.1908.tb00176.x
34. Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie. 1931;162(4):480–3. doi: 10.1007/bf01863914
35. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40(9):3256–60. Epub 2002/08/31. doi: 10.1128/JCM.40.9.3256-3260.2002 12202562; PubMed Central PMCID: PMCPMC130722.
36. Graaf A, Ulrich R, Maksimov P, Scheibner D, Koethe S, Abdelwhab EM, et al. A viral race for primacy: co-infection of a natural pair of low and highly pathogenic H7N7 avian influenza viruses in chickens and embryonated chicken eggs. Emerging Microbes & Infections. 2018;7(1):1–12. doi: 10.1038/s41426-018-0204-0 30514922
37. Mamerow S, Scheffter R, Röhrs S, Stech O, Blohm U, Schwaiger T, et al. Double-attenuated influenza virus elicits broad protection against challenge viruses with different serotypes in swine. Veterinary Microbiology. 2019;231:160–8. doi: 10.1016/j.vetmic.2019.03.013 30955804
38. Ferrari M, Candotti P, Lombardi G, Amadori M, Dotti S, Guana S, et al. A comparison of the humoral and cell-mediated response of pigs experimentally infected with either influenza or PRRS viruses. 2008;32(1):199–201. doi: 10.1007/s11259-008-9161-8 18726247
39. Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, et al. Swine Influenza H1N1 Virus Induces Acute Inflammatory Immune Responses in Pig Lungs: a Potential Animal Model for Human H1N1 Influenza Virus. 2010;84(21):11210–8. doi: 10.1128/JVI.01211-10 20719941
40. Pomorska-Mol M, Markowska-Daniel I, Kwit K, Czyzewska E, Dors A, Rachubik J, et al. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus. Arch Virol. 2014;159(10):2605–14. doi: 10.1007/s00705-014-2116-1 24846450; PubMed Central PMCID: PMC4173111.
41. Forberg H, Hauge AG, Valheim M, Garcon F, Nunez A, Gerner W, et al. Early Responses of Natural Killer Cells in Pigs Experimentally Infected with 2009 Pandemic H1N1 Influenza A Virus. PLOS ONE. 2014;9(6):e100619. doi: 10.1371/journal.pone.0100619 24955764
42. Chen WW, Xie YX, Zhang YH, Feng YQ, Li BA, Li B, et al. [Changes and analysis of peripheral white blood cells and lymphocyte subsets for patients with pandemic influenza A virus (H1N1) infection]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2010;24(5):331–3. 21280315.
43. Cunha BA, Pherez FM, Schoch P. Diagnostic Importance of Relative Lymphopenia as a Marker of Swine Influenza (H1N1) in Adults. Clinical Infectious Diseases. 2009;49(9):1454–6. doi: 10.1086/644496 19824851
44. Giamarellos-Bourboulis EJ, Raftogiannis M, Antonopoulou A, Baziaka F, Koutoukas P, Savva A, et al. Effect of the Novel Influenza A (H1N1) Virus in the Human Immune System. PLOS ONE. 2009;4(12):e8393. doi: 10.1371/journal.pone.0008393 20037642
45. Merekoulias G, Alexopoulos EC, Belezos T, Panagiotopoulou E, Jelastopulu DME. Lymphocyte to monocyte ratio as a screening tool for influenza. PLoS currents. 2010;2:RRN1154–RRN. doi: 10.1371/currents.RRN1154 20383263.
46. Coşkun Ö, Avci IY, Sener K, Yaman H, Ogur R, Bodur H, et al. Relative lymphopenia and monocytosis may be considered as a surrogate marker of pandemic influenza a (H1N1). Journal of Clinical Virology. 2010;47(4):388–9. doi: 10.1016/j.jcv.2010.01.007 20133186
47. Indavarapu A, Akinapelli A. Neutrophils to lymphocyte ratio as a screening tool for swine influenza. The Indian journal of medical research. 2011;134(3):389–91. 21985824.
48. Shen H, Li B, Bai B, Hou J, Xu Z, Zhao M, et al. Laboratory features throughout the disease course of influenza A (H1N1) virus infection. Clin Lab. 2013;59(3–4):337–42. 23724623.
49. Kurt-Jones EA, Mandell L, Whitney C, Padgett A, Gosselin K, Newburger PE, et al. Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood. 2002;100(5):1860–8. 12176910.
50. Antal-Szalmas P, Strijp JA, Weersink AJ, Verhoef J, Van Kessel KP. Quantitation of surface CD14 on human monocytes and neutrophils. J Leukoc Biol. 1997;61(6):721–8. doi: 10.1002/jlb.61.6.721 9201263.
51. Baumann CL, Aspalter IM, Sharif O, Pichlmair A, Blüml S, Grebien F, et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. The Journal of Experimental Medicine. 2010;207(12):2689–701. doi: 10.1084/jem.20101111 21078886
52. Fox A, Hoa LNM, Horby P, van Doorn HR, Trung NV, Ha NH, et al. Severe Pandemic H1N1 2009 Infection Is Associated with Transient NK and T Deficiency and Aberrant CD8 Responses. PLOS ONE. 2012;7(2):e31535. doi: 10.1371/journal.pone.0031535 22363665
53. Chun J-K, Cha BH, Uh Y, Kim HY, Kim YK, Kwon W, et al. The Association of Lymphopenia with the Clinical Severity in the Korean Children Admitted to the Hospital with Pandemic (H1N1) 2009 Infection. Infect Chemother. 2011;43(1):36–41.
54. de Freitas DN, Isaia HA, Henzel A, Simao E, Gassen RB, Rodrigues LC. Comparative study of lymphocytes from individuals that were vaccinated and unvaccinated against the pandemic 2009–2011 H1N1 influenza virus in Southern Brazil. Rev Soc Bras Med Tro. 2015;48(5):514–23. doi: 10.1590/0037-8682-0163-2015 PubMed PMID: WOS:000364431200003. 26516959
55. Wilkinson TM, Li CKF, Chui CSC, Huang AKY, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nature Medicine. 2012;18:274. doi: 10.1038/nm.2612 https://www.nature.com/articles/nm.2612#supplementary-information. 22286307
56. Zhou X, McElhaney JE. Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine. 2011;29(11):2169–77. doi: 10.1016/j.vaccine.2010.12.029 21353149.
57. Zhao Y, Zhang Y-H, Denney L, Young D, Powell TJ, Peng Y-C, et al. High Levels of Virus-Specific CD4+ T Cells Predict Severe Pandemic Influenza A Virus Infection. American Journal of Respiratory and Critical Care Medicine. 2012;186(12):1292–7. doi: 10.1164/rccm.201207-1245OC 23087026.
58. Cheroutre H. Starting at the Beginning: New Perspectives on the Biology of Mucosal T Cells. 2004;22(1):217–46. doi: 10.1146/annurev.immunol.22.012703.104522 15032579.
59. Cawthon AG, Lu H, Alexander-Miller MA. Peptide Requirement for CTL Activation Reflects the Sensitivity to CD3 Engagement: Correlation with CD8αβ Versus CD8αα Expression. The Journal of Immunology. 2001;167(5):2577–84. doi: 10.4049/jimmunol.167.5.2577 11509598
60. Van Oers NSC, Teh SJ, Garvin AM, Forbush KA, Perlmutter RM, Teh HS. CD8 Inhibits Signal Transduction through the T Cell Receptor in CD4-CD8- Thymocytes from T Cell Receptor Transgenic Mice Reconstituted with a Transgenic CD8α Molecule. Journal of Immunology. 1993;151(2):777–90.
61. Denning TL, Granger S, Mucida D, Graddy R, Leclercq G, Zhang W, et al. Mouse TCRαβ+/CD8αα Intraepithelial Lymphocytes Express Genes That Down-Regulate Their Antigen Reactivity and Suppress Immune Responses. 2007;178(7):4230–9. doi: 10.4049/jimmunol.178.7.4230 17371979
62. Cawthon AG, Alexander-Miller MA. Optimal Colocalization of TCR and CD8 as a Novel Mechanism for the Control of Functional Avidity. The Journal of Immunology. 2002;169(7):3492–8. doi: 10.4049/jimmunol.169.7.3492 12244138
63. Walker LJ, Marrinan E, Muenchhoff M, Ferguson J, Kloverpris H, Cheroutre H, et al. CD8αα Expression Marks Terminally Differentiated Human CD8+ T Cells Expanded in Chronic Viral Infection. Frontiers in immunology. 2013;4:223–. doi: 10.3389/fimmu.2013.00223 23964274.
64. Cheroutre H, Lambolez F. Doubting the TCR Coreceptor Function of CD8αα. Immunity. 2008;28(2):149–59. doi: 10.1016/j.immuni.2008.01.005 18275828
65. Konno A, Okada K, Mizuno K, Nishida M, Nagaoki S, Toma T, et al. CD8αα memory effector T cells descend directly from clonally expanded CD8α+βhigh TCRαβ T cells in vivo. 2002;100(12):4090–7. doi: 10.1182/blood-2002-04-1136 %J Blood
66. Roden AC, Morice WG, Hanson CA. Immunophenotypic Attributes of Benign Peripheral Blood γδ T Cells and Conditions Associated With Their Increase. Archives of Pathology & Laboratory Medicine. 2008;132(11):1774–80. doi: 10.1043/1543-2165-132.11.1774 18976014.
67. Lahn M. The role of γδ T cells in the airways. Journal of Molecular Medicine. 2000;78(8):409–25. doi: 10.1007/s001090000123 11097110
68. Lahn M, Kanehiro A, Takeda K, Joetham A, Schwarze J, Köhler G, et al. Negative regulation of airway responsiveness that is dependent on γδ T cells and independent of αβ T cells. Nature Medicine. 1999;5:1150. doi: 10.1038/13476 10502818
69. Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan P-L, et al. Phosphoantigen-Expanded Human γδ T Cells Display Potent Cytotoxicity against Monocyte-Derived Macrophages Infected with Human and Avian Influenza Viruses. The Journal of Infectious Diseases. 2009;200(6):858–65. doi: 10.1086/605413 19656068
70. Qin G, Liu Y, Zheng J, Ng IHY, Xiang Z, Lam K-T, et al. Type 1 responses of human Vγ9Vδ2 T cells to influenza A viruses. Journal of virology. 2011;85(19):10109–16. doi: 10.1128/JVI.05341-11 21752902.
71. Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EBM, von der Thüsen JH, et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. The Journal of Clinical Investigation. 2011;121(6):2254–63. doi: 10.1172/JCI44675 21537083
72. Hong MJ, Gu BH, Madison MC, Landers C, Tung HY, Kim M, et al. Protective role of γδ T cells in cigarette smoke and influenza infection. Mucosal Immunology. 2017;11:894. doi: 10.1038/mi.2017.93 https://www.nature.com/articles/mi201793#supplementary-information. 29091081
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania