Cytokine profiles of umbilical cord blood mononuclear cells upon in vitro stimulation with lipopolysaccharides of different vaginal gram-negative bacteria
Autoři:
Edith Reuschel aff001; Martina Toelge aff002; Kathrin Entleutner aff001; Ludwig Deml aff002; Birgit Seelbach-Goebel aff001
Působiště autorů:
Department of Obstetrics and Gynecology, University of Regensburg, Hospital of the Barmherzige Brueder, Clinic St Hedwig, Regensburg, Germany
aff001; Institute of Medical Microbiology, University Hospital Regensburg, Regensburg, Germany
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222465
Souhrn
Inflammatory immune responses induced by lipopolysaccharides (LPS) of gram-negative bacteria play an important role in the pathogenesis of preterm labor and delivery, and in neonatal disorders. To better characterize LPS-induced inflammatory response, we determined the cytokine profile of umbilical cord blood mononuclear cells (UBMC) stimulated with LPS of seven vaginal gram-negative bacteria commonly found in pregnant women with preterm labor and preterm rupture of membrane. UBMC from ten newborns of healthy volunteer mothers were stimulated with purified LPS of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Acinetobacter calcoaceticus, Citrobacter freundii, and Pseudomonas aeruginosa. UBMC supernatants were tested for the presence of secreted pro-inflammatory cytokines (IL-6, IL-1β, TNF), anti-inflammatory cytokine (IL-10), TH1-type cytokines (IL-12, IFN-γ), and chemokines (IL-8, MIP-1α, MIP-1β, MCP-1) by Luminex technology. The ten cytokines were differentially induced by the LPS variants. LPS of E. coli and E. aerogenes showed the strongest stimulatory activity and P. aeruginosa the lowest. Interestingly, the ability of UBMC to respond to LPS varied greatly among donors, suggesting a strong individual heterogeneity in LPS-triggered inflammatory response.
Klíčová slova:
Biology and life sciences – Cell biology – Organisms – Developmental biology – Anatomy – Medicine and health sciences – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Pseudomonas aeruginosa – Bacteria – Pseudomonas – Pathology and laboratory medicine – Pathogens – Embryology – Physiology – Neonates – Diagnostic medicine – Signs and symptoms – Immunology – Immune system – Innate immune system – Cytokines – Immune response – Inflammation – Immune physiology – Molecular development – Body fluids – Blood – Bacteriology – Cell motility – Chemotaxis – Chemokines – Gram negative bacteria – Umbilical cord
Zdroje
1. Goldenberg RL. The management of preterm labor. Obstet Gynecol. 2002;100: 1020–1037. doi: 10.1016/s0029-7844(02)02212-3 12423870
2. Manktelow BN, Draper ES, Annamalai S, Field D. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch Dis Child Fetal Neonatal Ed. 2001;85: F33–35. doi: 10.1136/fn.85.1.F33 11420319
3. Menon R, Fortunato SJ. Fetal membrane inflammatory cytokines: a switching mechanism between the preterm premature rupture of the membranes and preterm labor pathways. J Perinat Med. 2004;32: 391–399. doi: 10.1515/JPM.2004.134 15493713
4. Walker KF, Thornton JG. Tocolysis and preterm labour. Lancet. 2016;387: 2068–2070. doi: 10.1016/S0140-6736(16)00590-0 26944025
5. Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med. 2000;343: 378–384. doi: 10.1056/NEJM200008103430601 10933736
6. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 2016. Natl Vital Stat Rep. 2018;67: 1–55.
7. Chawanpaiboon S, Vogel JP, Moller A-B, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. The Lancet Global Health. 2019;7: e37–e46. doi: 10.1016/S2214-109X(18)30451-0 30389451
8. Lettieri L, Vintzileos AM, Rodis JF, Albini SM, Salafia CM. Does “idiopathic” preterm labor resulting in preterm birth exist? Am J Obstet Gynecol. 1993;168: 1480–1485. doi: 10.1016/s0002-9378(11)90785-6 8498431
9. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379: 2151–2161. doi: 10.1016/S0140-6736(12)60560-1 22579125
10. Romero R, Gómez R, Chaiworapongsa T, Conoscenti G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol. 2001;15 Suppl 2: 41–56.
11. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med. 1995;333: 1737–1742. doi: 10.1056/NEJM199512283332604 7491137
12. Pankuch GA, Appelbaum PC, Lorenz RP, Botti JJ, Schachter J, Naeye RL. Placental microbiology and histology and the pathogenesis of chorioamnionitis. Obstet Gynecol. 1984;64: 802–806. 6390279
13. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988;319: 972–978. doi: 10.1056/NEJM198810133191503 3262199
14. Soraisham AS, Singhal N, McMillan DD, Sauve RS, Lee SK, Canadian Neonatal Network. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol. 2009;200: 372.e1–6. doi: 10.1016/j.ajog.2008.11.034 19217596
15. Martinelli P, Sarno L, Maruotti GM, Paludetto R. Chorioamnionitis and prematurity: a critical review. J Matern Fetal Neonatal Med. 2012;25 Suppl 4: 29–31. doi: 10.3109/14767058.2012.714981 22958008
16. García-Muñoz Rodrigo F, Galán Henríquez GM, Ospina CG. Morbidity and mortality among very-low-birth-weight infants born to mothers with clinical chorioamnionitis. Pediatr Neonatol. 2014;55: 381–386. doi: 10.1016/j.pedneo.2013.12.007 24745649
17. Romero R, Yoon BH, Chaemsaithong P, Cortez J, Park C-W, Gonzalez R, et al. Secreted phospholipase A2 is increased in meconium-stained amniotic fluid of term gestations: potential implications for the genesis of meconium aspiration syndrome. J Matern Fetal Neonatal Med. 2014;27: 975–983. doi: 10.3109/14767058.2013.847918 24063538
18. Cooke R. Chorioamnionitis, maternal fever, and neonatal encephalopathy. Dev Med Child Neurol. 2008;50: 9. doi: 10.1111/j.1469-8749.2007.00009.x 18173621
19. Korzeniewski SJ, Romero R, Cortez J, Pappas A, Schwartz AG, Kim CJ, et al. A “multi-hit” model of neonatal white matter injury: cumulative contributions of chronic placental inflammation, acute fetal inflammation and postnatal inflammatory events. J Perinat Med. 2014;42: 731–743. doi: 10.1515/jpm-2014-0250 25205706
20. Pappas A, Kendrick DE, Shankaran S, Stoll BJ, Bell EF, Laptook AR, et al. Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr. 2014;168: 137–147. doi: 10.1001/jamapediatrics.2013.4248 24378638
21. Shatrov JG, Birch SCM, Lam LT, Quinlivan JA, McIntyre S, Mendz GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet Gynecol. 2010;116: 387–392. doi: 10.1097/AOG.0b013e3181e90046 20664400
22. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345: 760–765. doi: 10.1126/science.1251816 25124429
23. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42: 1–8. doi: 10.1203/00006450-199707000-00001 9212029
24. Leviton A. Preterm birth and cerebral palsy: is tumor necrosis factor the missing link? Dev Med Child Neurol. 1993;35: 553–558. doi: 10.1111/j.1469-8749.1993.tb11688.x 8504899
25. Abdallah MW, Larsen N, Mortensen EL, Atladóttir HÓ, Nørgaard-Pedersen B, Bonefeld-Jørgensen EC, et al. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish Newborn Screening Biobank. J Neuroimmunol. 2012;252: 75–82. doi: 10.1016/j.jneuroim.2012.07.013 22917523
26. Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull. 2009;35: 631–637. doi: 10.1093/schbul/sbn121 18832344
27. Kassim Z, Aziz AA, Haque QM, Cheung HAS. Isolation of Proteus mirabilis from severe neonatal sepsis and central nervous system infection with extensive pneumocephalus. Eur J Pediatr. 2003;162: 644–645. doi: 10.1007/s00431-003-1240-9 12836017
28. Viswanathan R, Singh AK, Mukherjee S, Mukherjee R, Das P, Basu S. An outbreak of neonatal sepsis presenting with exanthematous rash caused by Klebsiella pneumoniae. Epidemiol Infect. 2011;139: 226–228. doi: 10.1017/S0950268810000701 20370956
29. Rodrigues J, Rocha D, Santos F, João A. Neonatal Citrobacter koseri Meningitis: Report of Four Cases. Case Rep Pediatr. 2014;2014: 195204. doi: 10.1155/2014/195204 24716069
30. Shete VB, Ghadage DP, Muley VA, Bhore AV. Acinetobacter septicemia in neonates admitted to intensive care units. J Lab Physicians. 2009;1: 73–76. doi: 10.4103/0974-2727.59704 21938255
31. Ovalle A, Martínez MA, Kakarieka E, García M, Salinas A. [Fatal neonatal sepsis caused by vertical transmission of Morganella morganii. Report of one case]. Rev Med Chil. 2009;137: 1201–1204. doi: /S0034-98872009000900010 20011962
32. Schulz D, Schlieckau F, Fill Malfertheiner S, Reuschel E, Seelbach-Göbel B, Ernst W. Effect of betamethasone, indomethacin and fenoterol on neonatal and maternal mononuclear cells stimulated with Escherichia coli. Cytokine. 2019;116: 97–105. doi: 10.1016/j.cyto.2018.12.017 30703694
33. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8: 217–225. doi: 10.1096/fasebj.8.2.8119492 8119492
34. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71: 635–700. doi: 10.1146/annurev.biochem.71.110601.135414 12045108
35. Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42: 145–151. doi: 10.1016/j.cyto.2008.01.006 18304834
36. Peltier MR. Immunology of term and preterm labor. Reprod Biol Endocrinol. 2003;1: 122. doi: 10.1186/1477-7827-1-122 14651749
37. O’Hern Perfetto C, Fan X, Dahl S, Krieg S, Westphal LM, Bunker Lathi R, et al. Expression of interleukin-22 in decidua of patients with early pregnancy and unexplained recurrent pregnancy loss. J Assist Reprod Genet. 2015;32: 977–984. doi: 10.1007/s10815-015-0481-7 25925347
38. Al-Amin MM, Alam T, Hasan SMN, Hasan AT, Quddus AHMR. Prenatal maternal lipopolysaccharide administration leads to age- and region-specific oxidative stress in the early developmental stage in offspring. Neuroscience. 2016;318: 84–93. doi: 10.1016/j.neuroscience.2016.01.002 26774051
39. Menon R, Peltier MR, Eckardt J, Fortunato SJ. Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am J Obstet Gynecol. 2009;201: 306.e1–6. doi: 10.1016/j.ajog.2009.06.027 19733282
40. Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud C-A, Eyraud M-A, Zéni F, et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol. 2012;145: 189–200. doi: 10.1016/j.clim.2012.09.004 23108090
41. Schildberger A, Rossmanith E, Eichhorn T, Strassl K, Weber V. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators Inflamm. 2013;2013: 697972. doi: 10.1155/2013/697972 23818743
42. Di Simone N, Di Nicuolo F, Marana R, Castellani R, Ria F, Veglia M, et al. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response. PLoS ONE. 2017;12: e0180642. doi: 10.1371/journal.pone.0180642 28704412
43. Mizoguchi M, Ishida Y, Nosaka M, Kimura A, Kuninaka Y, Yahata T, et al. Prevention of lipopolysaccharide-induced preterm labor by the lack of CX3CL1-CX3CR1 interaction in mice. PLoS ONE. 2018;13: e0207085. doi: 10.1371/journal.pone.0207085 30399192
44. Gangloff SC, Hijiya N, Haziot A, Goyert SM. Lipopolysaccharide structure influences the macrophage response via CD14-independent and CD14-dependent pathways. Clin Infect Dis. 1999;28: 491–496. doi: 10.1086/515176 10194066
45. Netea MG, van Deuren M, Kullberg BJ, Cavaillon J-M, Van der Meer JWM. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol. 2002;23: 135–139. 11864841
46. Beutler B., Inferences questions and possibilities in Toll-like receptor signalling. Nature. 2004;430: 257–263. doi: 10.1038/nature02761 15241424
47. Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol. 2002;3: 354–359. doi: 10.1038/ni777 11912497
48. Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol. 2013;3: 3. doi: 10.3389/fcimb.2013.00003 23408095
49. Yerkovich ST, Wikström ME, Suriyaarachchi D, Prescott SL, Upham JW, Holt PG. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide. Pediatr Res. 2007;62: 547–552. doi: 10.1203/PDR.0b013e3181568105 17805207
50. Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol. 2006;177: 1956–1966. doi: 10.4049/jimmunol.177.3.1956 16849509
51. Sugitharini V, Pavani K, Prema A, Berla Thangam E. TLR-mediated inflammatory response to neonatal pathogens and co-infection in neonatal immune cells. Cytokine. 2014;69: 211–217. doi: 10.1016/j.cyto.2014.06.003 24999538
52. Sadeghi K, Berger A, Langgartner M, Prusa A-R, Hayde M, Herkner K, et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis. 2007;195: 296–302. doi: 10.1086/509892 17191175
53. Seelbach-Goebel B. Antibiotic Therapy for Premature Rupture of Membranes and Preterm Labor and Effect on Fetal Outcome. Geburtshilfe Frauenheilkd. 2013;73: 1218–1227. doi: 10.1055/s-0033-1360195 24771902
54. Haraguchi GE, Zähringer U, Jann B, Jann K, Hull RA, Hull SI. Genetic characterization of the O4 polysaccharide gene cluster from Escherichia coli. Microb Pathog. 1991;10: 351–361. 1721674
55. Bryn K, Rietschel ET. L-2-hydroxytetradecanoic acid as a constituent of Salmonella lipopolysaccharides (lipid A). Eur J Biochem. 1978;86: 311–315. doi: 10.1111/j.1432-1033.1978.tb12312.x 658049
56. Sidorczyk Z, Zähringer U, Rietschel ET. Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re-mutant. Eur J Biochem. 1983;137: 15–22. doi: 10.1111/j.1432-1033.1983.tb07789.x 6360683
57. Süsskind M, Müller-Loennies S, Nimmich W, Brade H, Holst O. Structural investigation on the carbohydrate backbone of the lipopolysaccharide from Klebsiella pneumoniae rough mutant R20/O1-. Carbohydr Res. 1995;269: C1–7. doi: 10.1016/0008-6215(95)00002-b 7773983
58. Kawahara K, Brade H, Rietschel ET, Zähringer U. Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305. Detection of a new 2-octulosonic acid interlinking the core oligosaccharide and lipid A component. Eur J Biochem. 1987;163: 489–495. doi: 10.1111/j.1432-1033.1987.tb10895.x 3830168
59. Brandenburg K, Heinbockel L, Correa W, Fukuoka S, Gutsmann T, Zähringer U, et al. Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5. J Struct Biol. 2016;194: 68–77. doi: 10.1016/j.jsb.2016.01.014 26828112
60. Kooistra O, Bedoux G, Brecker L, Lindner B, Sánchez Carballo P, Haras D, et al. Structure of a highly phosphorylated lipopolysaccharide core in the Delta algC mutants derived from Pseudomonas aeruginosa wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Carbohydr Res. 2003;338: 2667–2677. doi: 10.1016/j.carres.2003.07.004 14670725
61. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000;97: 13766–13771. doi: 10.1073/pnas.250476497 11095740
62. Eggesbø JB, Hjermann I, Lund PK, Joø GB, Ovstebø R, Kierulf P. LPS-induced release of IL-1 beta, IL-6, IL-8, TNF-alpha and sCD14 in whole blood and PBMC from persons with high or low levels of HDL-lipoprotein. Cytokine. 1994;6: 521–529. 7530060
63. Eggesbø JB, Hjermann I, Joø GB, Ovstebø R, Kierulf P. LPS-induced release of EGF, GM-CSF, GRO alpha, LIF, MIP-1 alpha and PDGF-AB in PBMC from persons with high or low levels of HDL lipoprotein. Cytokine. 1995;7: 562–567. doi: 10.1006/cyto.1995.0076 8580373
64. Lindner H, Holler E, Ertl B, Multhoff G, Schreglmann M, Klauke I, et al. Peripheral blood mononuclear cells induce programmed cell death in human endothelial cells and may prevent repair: role of cytokines. Blood. 1997;89: 1931–1938. 9058713
65. Kumolosasi E, Salim E, Jantan I, Ahmad W. Kinetics of Intracellular, Extracellular and Production of Pro-Inflammatory Cytokines in Lipopolysaccharide- Stimulated Human Peripheral Blood Mononuclear Cells. Tropical Journal of Pharmaceutical Research. 2014;13: 536–543–543. doi: 10.4314/tjpr.v13i4.8
66. del Campo R, Martínez E, del Fresno C, Alenda R, Gómez-Piña V, Fernández-Ruíz I, et al. Translocated LPS might cause endotoxin tolerance in circulating monocytes of cystic fibrosis patients. PLoS ONE. 2011;6: e29577. doi: 10.1371/journal.pone.0029577 22216320
67. Dembinski J, Behrendt D, Reinsberg J, Bartmann P. Endotoxin-stimulated production of IL-6 and IL-8 is increased in short-term cultures of whole blood from healthy term neonates. Cytokine. 2002;18: 116–119. 12096927
68. Hagberg H, Mallard C, Jacobsson B. Role of cytokines in preterm labour and brain injury. BJOG. 2005;112 Suppl 1: 16–18. doi: 10.1111/j.1471-0528.2005.00578.x 15715588
69. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci. 2011;29: 663–671. doi: 10.1016/j.ijdevneu.2011.02.011 21382466
70. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50: 652–683. doi: 10.1097/GRF.0b013e31811ebef6 17762416
71. Usluoglu N, Pavlovic J, Moelling K, Radziwill G. RIP2 mediates LPS-induced p38 and IkappaBalpha signaling including IL-12 p40 expression in human monocyte-derived dendritic cells. Eur J Immunol. 2007;37: 2317–2325. doi: 10.1002/eji.200636388 17578844
72. Belderbos ME, van Bleek GM, Levy O, Blanken MO, Houben ML, Schuijff L, et al. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin Immunol. 2009;133: 228–237. doi: 10.1016/j.clim.2009.07.003 19648060
73. Janský L, Reymanová P, Kopecký J. Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or infected by Borrelia. Physiol Res. 2003;52: 593–598.
74. Mathias B, Mira JC, Rehfuss JP, Rincon JC, Ungaro R, Nacionales DC, et al. LPS Stimulation of Cord Blood Reveals a Newborn-Specific Neutrophil Transcriptomic Response and Cytokine Production. Shock. 2017;47: 606–614. doi: 10.1097/SHK.0000000000000800 28410545
75. Jaekal J, Abraham E, Azam T, Netea MG, Dinarello CA, Lim J-S, et al. Individual LPS responsiveness depends on the variation of toll-like receptor (TLR) expression level. J Microbiol Biotechnol. 2007;17: 1862–1867. 18092472
76. Michel O, LeVan TD, Stern D, Dentener M, Thorn J, Gnat D, et al. Systemic responsiveness to lipopolysaccharide and polymorphisms in the toll-like receptor 4 gene in human beings. J Allergy Clin Immunol. 2003;112: 923–929. doi: 10.1016/j.jaci.2003.05.001 14610481
77. Krohn MA, Thwin SS, Rabe LK, Brown Z, Hillier SL. Vaginal colonization by Escherichia coli as a risk factor for very low birth weight delivery and other perinatal complications. J Infect Dis. 1997;175: 606–610. doi: 10.1093/infdis/175.3.606 9041332
78. Watt S, Lanotte P, Mereghetti L, Moulin-Schouleur M, Picard B, Quentin R. Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors. J Clin Microbiol. 2003;41: 1929–1935. doi: 10.1128/JCM.41.5.1929-1935.2003 12734229
79. Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127: 817–826. doi: 10.1542/peds.2010-2217 21518717
80. Burnichon G, Le Floch MF, Virmaux M, Baron R, Tandé D, Lejeune B. [Outbreak of Enterobacter aerogenes in paediatric unit]. Med Mal Infect. 2004;34: 166–170. 15619887
81. Rosmanova R, Kanovska E, Sredkova M, Khitsova S, Vlkova A. Nosocomial enterobacter—sepsis in neonatal intensive care unit in Pleven. Akush Ginekol (Sofia). 2000;39: 19–22.
82. McKenna KC, Beatty KM, Vicetti Miguel R, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b+ CD15+ granulocytes which inhibit T cell function. J Immunol Methods. 2009;341: 68–75. doi: 10.1016/j.jim.2008.10.019 19041316
83. Naegelen I, Beaume N, Plançon S, Schenten V, Tschirhart EJ, Bréchard S. Regulation of Neutrophil Degranulation and Cytokine Secretion: A Novel Model Approach Based on Linear Fitting. J Immunol Res. 2015;2015: 817038. doi: 10.1155/2015/817038 26579547
84. Kunze M, Klar M, Morfeld CA, Thorns B, Schild RL, Markfeld-Erol F, et al. Cytokines in noninvasively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol. 2016;215: 96.e1–8. doi: 10.1016/j.ajog.2016.01.181 26829512
85. Brocklehurst P, Gordon A, Heatley E, Milan SJ. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. 2013; CD000262. doi: 10.1002/14651858.CD000262.pub4 23440777
86. Ernst W, Kusi E, Fill Malfertheiner S, Reuschel E, Deml L, Seelbach-Göbel B. The effect of Indomethacin and Betamethasone on the cytokine response of human neonatal mononuclear cells to gram-positive bacteria. Cytokine. 2015;73: 91–100. doi: 10.1016/j.cyto.2015.01.023 25743243
87. Miller SP, Mayer EE, Clyman RI, Glidden DV, Hamrick SEG, Barkovich AJ. Prolonged indomethacin exposure is associated with decreased white matter injury detected with magnetic resonance imaging in premature newborns at 24 to 28 weeks’ gestation at birth. Pediatrics. 2006;117: 1626–1631. doi: 10.1542/peds.2005-1767 16651316
88. Sirota L, Punsky I, Bessler H. Effect of indomethacin on IL-1beta, IL-6 and TNFalpha production by mononuclear cells of preterm newborns and adults. Acta Paediatr. 2000;89: 331–335. 10772282
89. Yanowitz TD, Yao AC, Werner JC, Pettigrew KD, Oh W, Stonestreet BS. Effects of prophylactic low-dose indomethacin on hemodynamics in very low birth weight infants. J Pediatr. 1998;132: 28–34. doi: 10.1016/s0022-3476(98)70480-9 9469996
90. Ng PY, Ireland DJ, Keelan JA. Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front Immunol. 2015;6: 166. doi: 10.3389/fimmu.2015.00166 25941525
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania