#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and –independent methods


Autoři: Mareike Weber aff001;  Janine Liedtke aff001;  Susanne Plattes aff002;  André Lipski aff001
Působiště autorů: Department of Food Microbiology and Hygiene, Institution of Nutrition and Food Science, Rheinische Friedrich-Wilhelms-University, Bonn, North-Rhine-Westfalia, Germany aff001;  CIDRe, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, North-Rhine-Westfalia, Germany aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222238

Souhrn

Dairy biofilms as a source of contamination of milk and its products are of great concern in the dairy industry. For a reliable risk assessment, knowledge about the microbial community composition of biofilms in the milking systems of dairy farms must be improved. In this work, swab samples of milking machine biofilms of two dairy farms were investigated by a combination of culture-dependent and -independent methods. Spots in the milking system with enhanced microbial colonization were identified by quantification on selective and non-selective media. In addition, stainless steel coupons were placed into the piping system of a milking machine, removed after several milking intervals, and investigated for colonization by cultivation and culture-independently. Isolates were differentiated and identified by a combination of chemotaxonomical methods and 16S rRNA sequencing. The culture-independent approach involved treatment of the samples with the viability dye propidium monoazide prior to direct DNA-extraction by enzymatic cell lysis and cloning to exclude bias from dead biomass. The milking equipment retainers and the outlet of the milk bulk tank were identified as highly colonized spots on both farms. A high bacterial diversity was detected covering the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Presence of biofilms was demonstrated on several materials including stainless steel and plastic, which are frequently used in milking machines, but also in dairy processing plants. Growth of mainly Gram-positive bacteria with high percentages of the phylum Actinobacteria was detected on the stainless steel coupons after exposition in the milking system for two to three days. Knowledge about the heterogenic microbial load on different parts of the milking machines and the stainless steel coupons will help to identify primary colonizers of the milking system, to assess the risk potential of biofilms for raw milk, to improve sanitation processes and to identify parts of the milking machine, which should be improved by hygienic design.

Klíčová slova:

Biology and life sciences – Organisms – Physical sciences – Engineering and technology – Anatomy – Medicine and health sciences – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Bacteria – Pathology and laboratory medicine – Pathogens – Materials science – Physiology – Nutrition – Actinobacteria – Body fluids – Diet – Bacteriology – Equipment – Bacterial biofilms – Biofilms – Bacillus – Beverages – Milk – Metallurgy – Alloys – Steel – Stainless steel


Zdroje

1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbiol biofilms. Annu Rev Microbiol. 1995;49:711–745. 8561477

2. Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. Food Sci Tech. 2010;43:573–583.

3. Teh KH, Flint S, Palmer J, Andrewes P, Bremer P, Lindsay D. Biofilm–An unrecognised source of spoilage enzymes in dairy products? Int Dairy J. 2014;34:32–40.

4. Brooks JD, Flint SH. Biofilms in the food industry: problems and potential solutions. Int J Food Sci Tech. 2008;43:2163–2176.

5. Jahid IK, Ha SD. The Paradox of Mixed-Species Biofilms in the Context of Food Safety. Compr Rev Food Sci F, 2014;13:990–1011.

6. Bremer PJ, Fillery S, McQuillan AJ. Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int J Food Microbiol. 2006;106:254–262. 16216371

7. Weiler C, Ifland A, Naumann A, Kleta S, Noll M. Incorporation of Listeria monocytogenes strains in raw milk biofilms. Int J Food Microbiol. 2013;161:61–68. doi: 10.1016/j.ijfoodmicro.2012.11.027 23279814

8. Sharma M, Anand SK. Characterization of constitutives microflora of biofilms in dairy processing lines. Food Microbiol, 2002;19:627–636.

9. Latorre AA, Van Kessel JS, Karns JS, Zurakowski MJ, Pradhan AK, Boor KJ, et al. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J Dairy Sci. 2010;93:2792–2802. doi: 10.3168/jds.2009-2717 20494189

10. Teh KH, Flint S, Palmer J, Lindsay D, Andrewes P, Bremer P. Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers. Int Dairy J. 2011;21:742–747.

11. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol. 2007;73:7162–7168. doi: 10.1128/AEM.00866-07 17890340

12. Vacheyrou M, Normand AC, Guyot P, Cassagne C, Piarroux R, Bouton Y. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int J Food Microbiol. 2011;146:253–262. doi: 10.1016/j.ijfoodmicro.2011.02.033 21429612

13. Lafarge V, Ogier JC, Girard V, Maladen V, Leveau JY, Gruss A, et al. Raw cow milk bacterial population shifts attributable to refrigeration. Appl Environ Microbiol. 2004;70:5644–5650. doi: 10.1128/AEM.70.9.5644-5650.2004 15345453

14. Verdier-Metz I, Michel V, Delbès C, Montel MC. Do milking practices influence the bacterial diversity of raw milk? Food Microbiol. 2009;26:305–310. doi: 10.1016/j.fm.2008.12.005 19269573

15. Rasolofo EA, St-Gelais D, LaPointe G, Roy D. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk. Int J Food Microbiol. 2010;138:108–118. doi: 10.1016/j.ijfoodmicro.2010.01.008 20137820

16. Fricker M, Skånseng B, Rudi K, Stessl B, Ehling-Schulz M. Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. Int J Food Microbiol. 2011;145:S24–S30. doi: 10.1016/j.ijfoodmicro.2010.08.025 20855121

17. Verdier-Metz I, Gagne G, Bornes S, Monsallier F, Veisseire P, Delbès-Paus C, et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol. 2012;78:326–333. doi: 10.1128/AEM.06229-11 22081572

18. Weber M, Geißert J, Kruse M, Lipski A. Comparative analysis of bacterial community composition in bulk tank raw milk by culture-dependent and culture-independent methods using the viability dye propidium monoazide. J Dairy Sci. 2014;97:6761–6776. doi: 10.3168/jds.2014-8340 25242425

19. Shpigel NY, Pasternak Z, Factor G, Gottlieb Y. Diversity of Bacterial Biofilm Communities on Sprinklers from Dairy Farm Cooling Systems in Israel. PLoS ONE. 2015;10:e0139111. doi: 10.1371/journal.pone.0139111 26407190

20. Ksontini H, Kachouri F, Hamdi M. Dairy Biofilm: Impact of microbial community on raw milk quality. J Food Quality. 2013;36:282–290.

21. Flach J, Grzybowski V, Toniazzo G, Corcao G. Adhesion and Production of Degrading Enzymes by Bacteria Isolated from Biofilms in Raw Milk Cooling Tanks. Food Sci Technol. 2014;34:571–576.

22. Stellato G, De Filippis F, La Storia A, Ercolini D. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment. Appl Environ Microb. 2015;81:7893–7904.

23. Cherif-Antar A, Moussa-Boudjemâa B, Didouh N, Medjahdi K, Mayo B, Flórez AB. Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Sci Technol. 2016;96:27–38.

24. Latorre AA, Van Kessel JS, Karns JS, Zurakowski MJ, Pradhan AK, Zadoks RN, et al. Molecular Ecology of Listeria monocytogenes: Evidence for a Reservoir in Milking Equipment on a Dairy Farm. Appl Environ Microb, 2009;75:1315–1323.

25. Lee SHI, Mangolin BLC, Goncalves JL, Neeff DV, Silva MP, Cruz AG, et al. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. J Dairy Sci. 2014;97:1812–1816. doi: 10.3168/jds.2013-7387 24440248

26. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, et al. Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC; 1981.

27. Sasser M. Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204. Edited by: Klement Z.; Rudolph K. and Sands D. C.. Budapest: Akademiai Kiado; 1990.

28. Lipski A, Altendorf KH. Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol. 1997;20:448–457.

29. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–351. doi: 10.1099/ijs.0.059774-0 24505072

30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0 22140171

31. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389 9254694

32. Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS. Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biot. 2003;30:225–238.

33. Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiol. 2019;79:11–19. doi: 10.1016/j.fm.2018.10.019 30621865

34. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol. 1995;164:165–172. 7545384

35. Messing J. New M13 vectors for cloning. Method Enzymol. 1983;101:20–78.

36. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol. 2005;71:7724–7736. doi: 10.1128/AEM.71.12.7724-7736.2005 16332745

37. Good IJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40:237–264.

38. Singleton DR, Furlong MA, Rathbun SL, Whitman WB. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol. 2001;67:4374–4376. doi: 10.1128/AEM.67.9.4374-4376.2001 11526051

39. Shannon CE, Weaver W. The mathematical theory of communication. 4th print of the paperback ed. The Univ. of Illinois Press, Urbana; 1969.

40. Teixera P, Lopes Z, Azeredo J, Oliveira R, Vieira MJ. Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiol. 2005;22:247–251.

41. Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr Rev Food Sci. 2012;F 11:133–147.

42. Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. The Complex microbiota of raw milk. FEMS Microbiol Rev. 2013;37:664–698. doi: 10.1111/1574-6976.12030 23808865

43. Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroecke K, Hoste B, et al. Surface Microflora of Four Smear-Ripened Cheeses. Appl Environ Microb. 2005;71:6489–6500.

44. Irlinger F, Layec S, Hélinck S, Dugat-Bony E. Cheese rind microbial communitys: diversity, composition and origin. FEMS Microbiol Lett. 2015;362:1–11.

45. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol. 2007;57:2344–2348. 17911308

46. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol. 2008a;58:1024–1028.

47. Hantsis-Zacharov A, Shakéd T., Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int J Syst Evol Microbiol. 2008b;58:2635–2639. doi: 10.1099/ijs.0.65819-0 18984706

48. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer bottling plants. Int J Syst Evol Microbiol. 2008;58:26–33. doi: 10.1099/ijs.0.65362-0 18175677

49. Malek F, Moussa-Boudjemâa B, Khaouani-Yousfi F, Kalai A, Kihel M. Microflora of biofilm on Algerian dairy processing lines: An approach to improve microbial quality of pasteuized milk. Afr J Microbiol Res. 2012;6:3836–3844.

50. McKillip JL. Prevalence and expression of Enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Ant Leeuw J Microb. 2000;77:393–399.

51. Piessens V, Van Coillie E, Verbist B, Supré K, Braem G, Van Nuffel A, et al. Distribution of coagulase-negative Staphylococccus species from milk and environment of dairy cows differs between herds. J Dairy Sci. 2011;94:2933–2944. doi: 10.3168/jds.2010-3956 21605763

52. Supré K, Haesebrouk F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S. Some coagulase-negative Staphylococcus species affect udder health more than others. J Dairy Sci. 2011;94:2329–2340. doi: 10.3168/jds.2010-3741 21524522

53. Taponen S, Björkroth J, Pyörälä S. Coagulase-negative staphylococci isolated from bovine extramammary sites and intramammary infections in a single dairy herd. J Dairy Res. 2008;75:422–429. doi: 10.1017/S0022029908003312 18700996

54. Tremblay YDN, Lamarche D, Chever P, Haine D, Messier S, Jacques M. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J Dairy Sci. 2013;96:234–246. doi: 10.3168/jds.2012-5795 23141829

55. Vanderhaegen W, Piepers S, Leroy F, Van Coillie E, Haesebrouck F, De Vliegher S. Invited Review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci. 2014;97:5275–5293. doi: 10.3168/jds.2013-7775 24952781

56. Williams AG, Banks JM. Proteolytic and Other Hydrolytic Enzyme Activities in Non-starter Lactic acid Bacteria (NSLAB) Isolated from Cheddar Cheese Manufactured in the United Kingdom. Int Dairy J. 1997;7:763–774.

57. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G. Microbes from raw milk for fermented dairy products. Int Dairy J. 2002;12:91–109.

58. Agarwal S, Sharma K, Swanson BG, Yüksel GÜ, Clark S. Nonstarter Lactic Acid Bacteria Biofilms and Calcium Lactate Crystals in Cheddar Cheese. J Dairy Sci. 2006;89:1452–1466. 16606716

59. Somers EB, Johnson ME, Wong ACL. Biofilm Formation and Contamination of Cheese by Nonstarter Lactic Acid Bacteria in The Dairy Environment. J Dairy Sci. 2001;84:1926–1936. 11573770

60. Elmoslemany AM, Keefe GP, Dohoo IR, Jayarao BM. Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 2: Bacteria count-specific risk factors. J Dairy Sci. 2009;92:2644–2652. doi: 10.3168/jds.2008-1813 19447997

61. Suzuki MT, Giovannoni SJ. Bias Caused by Template Annealing in the Amplification of Mixtures of 16S rRNA Genes by PCR. Appl Environ Microbiol. 1996;62:625–630. 8593063

62. Von Wintzingerode F, Göbel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997;21:213–229. 9451814


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#