Wild pollinator activity negatively related to honey bee colony densities in urban context
Autoři:
Lise Ropars aff001; Isabelle Dajoz aff002; Colin Fontaine aff003; Audrey Muratet aff004; Benoît Geslin aff001
Působiště autorů:
IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, Marseille, France
aff001; Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES Paris UMR 7618) Equipe Ecologie et Evolution des réseaux d’interactions, Université Paris Diderot, CNRS-SU, Paris, France
aff002; Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR 7204), CNRS-Muséum National d’Histoire Naturelle-SU, Paris, France
aff003; Agence Régionale de la Biodiversité en Île-de-France (ARB ÎdF), Paris, France
aff004; Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, Strasbourg, France
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222316
Souhrn
As pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities. Recently, competition for floral resources between wild pollinators and honey bees has been highlighted in semi-natural contexts, but whether urban beekeeping could impact wild pollinators remains unknown. Here, we show that in the city of Paris (France), wild pollinator visitation rates are negatively correlated to honey bee colony densities present in the surrounding landscape (500m –slope = -0.614; p = 0.001 –and 1000m –slope = -0.489; p = 0.005). Regarding the morphological groups of wild pollinators, large solitary bee and beetle visitation rates were negatively affected by honey bee colony densities within a 500m buffer (slope = -0.425, p = 0.007 and slope = - 0.671, p = 0.002, respectively) and bumblebee visitation rates were negatively affected by honey bee colony density within a 1000m buffer (slope = - 0.451, p = 0.012). Further, lower interaction evenness in plant-pollinator networks was observed with high honey bee colony density within a 1000m buffer (slope = -0.487, p = 0.008). Finally, honey bees tended to focus their foraging activity on managed rather than wild plant species (student t-test, p = 0.001) whereas wild pollinators equally visited managed and wild species. We advocate responsible practices mitigating the introduction of high density of honey bee colonies in urban environments. Further studies are however needed to deepen our knowledge about the potential negative interactions between wild and domesticated pollinators.
Klíčová slova:
Biology and life sciences – Plant science – Organisms – Eukaryota – Plants – Research and analysis methods – Psychology – Animals – Invertebrates – Arthropoda – Insects – Hymenoptera – Social sciences – Zoology – Mathematical and statistical techniques – Behavior – Plant anatomy – Animal behavior – Foraging – Flowering plants – Bees – Honey bees – Bumblebees – Beetles – Flowers – Mathematical models
Zdroje
1. Potts SG, Imperatriz-fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD. Safeguarding pollinators and their values to human well-being. Nature. Nature Publishing Group; 2016; 1–10. doi: 10.1038/nature20588 27894123
2. Vanbergen AJ, Garratt MP, Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, et al. Threats to an ecosystem service: Pressures on pollinators. Front Ecol Environ. 2013;11: 251–259. doi: 10.1890/120126
3. Senapathi D, Carvalheiro G, Biesmeijer JC, Dodson C, Evans RL, Mckerchar M, et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc R Soc Biol Sci. 2015;282: 20150294–20150294. doi: 10.1098/rspb.2015.0294 25833861
4. Otto CR V, Roth CL, Carlson BL, Smart MD. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc Natl Acad Sci U S A. 2016;113: 10430–5. doi: 10.1073/pnas.1603481113 27573824
5. Geldmann J, González-Varo JP. Conserving honey bees does not help wildlife. Science (80-). 2018;359: 392–393. doi: 10.1126/science.aar2269 29371456
6. Colla SR, MacIvor JS. Questioning public perception, conservation policy, and recovery actions for honeybees in North America. Conserv Biol. 2017;31: 1202–1204. doi: 10.1111/cobi.12839 27624856
7. Pardee GL, Philpott SM. Native plants are the bee ‘ s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 2014;17: 641–659. doi: 10.1007/s11252-014-0349-0
8. Harrison T, Winfree R. Urban drivers of plant-pollinator interactions. Evans K, editor. Funct Ecol. 2015;29: 879–888. doi: 10.1111/1365-2435.12486
9. Fortel L, Henry M, Guilbaud L, Guirao AL, Kuhlmann M, Mouret H, et al. Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. Smith MA, editor. PLoS One. 2014;9: e104679. doi: 10.1371/journal.pone.0104679 25118722
10. Smith TJ, Saunders ME. Honey bees: the queens of mass media, despite minority rule among insect pollinators. Leather SR, Packer L, editors. Insect Conserv Divers. 2016;9: 384–390. doi: 10.1111/icad.12178
11. Geslin B, Gauzens B, Baude M, Dajoz I, Fontaine C, Henry M, et al. Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions. Adv Ecol Res. 2017;57: 1–53. doi: 10.1016/j.talanta.2011.11.033 22265567
12. Stange E, Zulian G, Rusch G, Barton D, Nowell M. Ecosystem services mapping for municipal policy: ESTIMAP and zoning for urban beekeeping. One Ecosyst. 2017;2: e14014. doi: 10.3897/oneeco.2.e14014
13. Alton K, Ratnieks F. To bee or not to bee. Biol. 2016;60: 12–15.
14. L ‘ apiculture. Brusselles Environ. 2017; 1–2. Available: http://www.environnement.brussels/thematiques/alimentation/produire-mes-aliments/que-produire-en-ville/lapiculture#
15. Baldock KCR, Goddard MA, Hicks DM, Kunin E, Mitschunas N, Osgathorpe LM, et al. Where is the UK ‘ s pollinator biodiversity? The importance of urban areas for flower- visiting insects. Proc R Soc Biol Sci. 2015;282: 20142849. doi: 10.1098
16. Sirohi MH, Jackson J, Edwards M, Ollerton J. Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J Insect Conserv. 2015;19: 487–500. doi: 10.1007/s10841-015-9769-2
17. Steffan-Dewenter I, Tscharntke T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia. 2000;122: 288–296. doi: 10.1007/s004420050034 28308384
18. Torné-Noguera A, Rodrigo A, Osorio S, Bosch J. Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic Appl Ecol. Elsevier GmbH; 2016;17: 199–209. doi: 10.1016/j.baae.2015.11.004
19. Henry M, Rodet G. Controlling the impact of the managed honeybee on wild bees in protected areas. Sci Rep. 2018;8: 9308. doi: 10.1038/s41598-018-27591-y 29915290
20. Magrach A, González-Varo JP, Boiffier M, Vilà M, Bartomeus I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat Ecol Evol. 2017;1: 1299–1307. doi: 10.1038/s41559-017-0249-9 29046536
21. Mallinger RE, Gaines-Day HR, Gratton C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. Raine NE, editor. PLoS One. 2017;12: e0189268. doi: 10.1371/journal.pone.0189268 29220412
22. Herbertsson L, Lindström SAM, Rundlöf M, Bommarco R, Smith HG. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl Ecol. Elsevier GmbH; 2016;17: 609–616. doi: 10.1016/j.baae.2016.05.001
23. Gargominy O, Tercerie S, Régnier C, Ramage T, Dupont P, Daszkiewicz P, et al. TAXREF v11, référentiel taxonomique pour la France: méthodologie, mise en oeuvre et diffusion. Museum national d’Histoire naturelle, Paris. Rapport Patrinat 2017–116. 2017. doi: 10.1109/TDEI.2009.5211872
24. Geslin B, Gauzens B, Thébault E, Dajoz I. Plant Pollinator Networks along a Gradient of Urbanisation. Ollerton J, editor. PLoS One. 2013;8: e63421. doi: 10.1371/journal.pone.0063421 23717421
25. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv. Elsevier Ltd; 2010;143: 669–676. doi: 10.1016/j.biocon.2009.12.003
26. Wright IVR, Roberts SPM, Collins BE. Evidence of forage distance limitations for small bees (Hymenoptera: Apidae). Eur J Entomol. 2015;112: 303–310. doi: 10.14411/eje.2015.028
27. Hegland SJ, Boeke L. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol. 2006;31: 532–538. doi: 10.1111/j.1365-2311.2006.00812.x
28. Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature. Nature Publishing Group; 2016;530: 85–88. doi: 10.1038/nature16532 26842058
29. Badeau V, Bonhomme M, Bonne F, Carre J, Cecchini S, Chuine I, et al. Les plantes au rythme des saisons. Biotope. 2017.
30. Logan M. Biostatistical Design and Analysis Using R [Internet]. Oxford, UK: Wiley-Blackwell; 2010. doi: 10.1002/9781444319620
31. Dormann CF, Fruend J, Gruber B. Visualising bipartite networks and calculating some (ecological) indices. Bipartite Ref Man. 2009; 1–73. doi: 10.1002/sim.4177 21484849
32. Vasquez DP, Chacoff NP, Cagnolo L. Evaluating multiple determinants of plant–animal mutualistic networks. Ecology. 2009;90: 2039–2046. doi: 10.1890/08-1837.1 19739366
33. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J. Conservation of species interaction networks. Biol Conserv. Elsevier Ltd; 2010;143: 2270–2279. doi: 10.1016/j.biocon.2009.12.004
34. Bluthgen N, Fründ J, Vasquez D, Menzel F. What do interaction network metrics tell us about specialization and biological traits? Ecology. 2008;89: 3387–3399. doi: 10.1890/07-2121.1 19137945
35. Cane JH, Tepedino VJ. Gauging the Effect of Honey Bee Pollen Collection on Native Bee Communities. A J Soc Conserv Biol. 2016;0: 1–6. doi: 10.1111/conl.12263
36. Gathmann A, Tscharntke T. Foraging ranges of solitary bees. J Anim Ecol. 2002;71: 757–764.
37. Knight ME, Martin AP, Bishop S, Osborne JL, Hale RJ, Sanderson RA, et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol. 2005;14: 1811–1820. doi: 10.1111/j.1365-294X.2005.02540.x 15836652
38. Goulson D, Stout JC, Kells AR. Do alien bumblebees compete with native flower-visiting insects in Tasmania? J Insect Conserv. 2002;6: 179–189.
39. Wojcik VA, Morandin LA, Davies Adams L, Rourke KE. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation? Environ Entomol. 2018; 1–12. doi: 10.1093/ee/nvx174 29145607
40. Balfour NJ, Garbuzov M, Ratnieks FLW. Longer tongues and swifter handling: Why do more bumble bees (Bombus spp.) than honey bees (Apis mellifera) forage on lavender (Lavandula spp.)? Ecol Entomol. 2013;38: 323–329. doi: 10.1111/een.12019
41. Stang M, Klinkhamer PGL, van der Meijden E. Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos. 2006;112: 111–121. doi: 10.1111/j.0030-1299.2006.14199.x
42. Fontaine C, Dajoz I, Meriguet J, Loreau M. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 2006;4: 0129–0135. doi: 10.1371/journal.pbio.0040001 16332160
43. Rodríguez-Gironés MA, Santamaría L. Models of optimal foraging and resource partitioning: Deep corollas for long tongues. Behav Ecol. 2006;17: 905–910. doi: 10.1093/beheco/arl024
44. Juhel AS, Barbu CM, Franck P, Roger-Estrade J, Butier A, Bazot M, et al. Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields. PLoS One. 2017;12. doi: 10.1371/journal.pone.0183878 28841712
45. Englund R. Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae)—Option for long-distance pollen dispersal in a temperate shrub. Oecologia. 1993;94: 295–302. doi: 10.1007/BF00341330 28314045
46. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. Scale-dependant effects of landscape context on three pollinator guilds. Ecology. 2002;83: 1421–1432. doi: 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
47. Cunningham SA, Fournier A, Neave MJ, Le Feuvre D. Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. J Appl Ecol. 2016;53: 350–359. doi: 10.1111/1365-2664.12573
48. Couvillon MJ, Riddell Pearce FC, Accleton C, Fensome KA, Quah SKL, Taylor EL, et al. Honey bee foraging distance depends on month and forage type. Apidologie. 2015;46: 61–70. doi: 10.1007/s13592-014-0302-5
49. Levé M, Baudry E, Bessa-Gomes C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci Total Environ. Elsevier B.V.; 2019;647: 420–430. doi: 10.1016/j.scitotenv.2018.07.310 30086494
50. Orford KA, Vaughan IP, Memmott J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc R Soc B Biol Sci. 2015;282: 20142934. doi: 10.1098/rspb.2014.2934 25808886
51. Ballantyne G, Baldock KCR, Willmer PG. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc R Soc B Biol Sci. 2015;282: 20151130. doi: 10.1098/rspb.2015.1130 26336181
52. Tylianakis JM, Tscharntke T, Lewis OT. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature. 2007;445: 202–205. doi: 10.1038/nature05429 17215842
53. Kaiser-Bunbury CN, Valentin T, Mougal J, Matatiken D, Ghazoul J. The tolerance of island plant-pollinator networks to alien plants. J Ecol. 2011;99: 202–213. doi: 10.1111/j.1365-2745.2010.01732.x
54. Holzschuh A, Dainese M, González-Varo JP, Mudri-Stojnić S, Riedinger V, Rundlöf M, et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Novotny V, editor. Ecol Lett. 2016;19: 1228–1236. doi: 10.1111/ele.12657 27531385
55. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. Pollination Syndromes and Floral Specialization. Annu Rev Ecol Evol Syst. 2004;35: 375–403. doi: 10.1146/annurev.ecolsys.34.011802.132347
56. Moroń D, Szentgyörgyi H, Skórka P, Potts SG, Woyciechowski M. Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conserv Divers. 2014;7: 113–121. doi: 10.1111/icad.12040
57. Moroń D, Grześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts SG, et al. Abundance and diversity of wild bees along gradients of heavy metal pollution. J Appl Ecol. 2012;49: 118–125. doi: 10.1111/j.1365-2664.2011.02079.x
58. Timberlake TP, Vaughan IP, Memmott J. Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J Appl Ecol. 2019; 1–12. doi: 10.1111/1365-2664.13403
59. Chauzat M-P, Cauquil L, Roy L, Franco S, Hendrikx P, Ribière-Chabert M. Demographics of the European Apicultural Industry. vanEngelsdorp D, editor. PLoS One. 2013;8: e79018. doi: 10.1371/journal.pone.0079018 24236084
60. Ropars L, Dajoz I, Geslin B. La diversité des abeilles parisiennes. Osmia. 2018;7: 14–19. doi: 10.1051/lhb/2010051
61. Ropars L, Dajoz I, Geslin B, Ropars L, Dajoz I, Geslin B. La ville un désert pour les abeilles sauvages? J Bot. 2017;79: 29–35.
62. Geslin B, Le Féon V, Kuhlmann M, Vaissière BE, Dajoz I. The bee fauna of large parks in downtown Paris, France. Ann la Société Entomol Fr. 2015;51: 487–493. doi: 10.1080/00379271.2016.1146632
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania