#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis


Autoři: Franziska Pausch aff001;  Kai Bischof aff002;  Scarlett Trimborn aff001
Působiště autorů: EcoTrace, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany aff001;  Marine Botany, University of Bremen, Bremen, Germany aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0221959

Souhrn

In some parts of the Southern Ocean (SO), even though low surface concentrations of iron (Fe) and manganese (Mn) indicate FeMn co-limitation, we still lack an understanding on how Mn and Fe availability influences SO phytoplankton ecophysiology. Therefore, this study investigated the effects of Fe and Mn limitation alone as well as their combination on growth, photophysiology and particulate organic carbon production of the bloom-forming Antarctic diatom Chaetoceros debilis. Our results clearly show that growth, photochemical efficiency and carbon production of C. debilis were co-limited by Fe and Mn as highest values were only reached when both nutrients were provided. Even though Mn-deficient cells had higher photochemical efficiencies than Fe-limited ones, they, however, displayed similar low growth and POC production rates, indicating that Mn limitation alone drastically impeded the cell’s performance. These results demonstrate that similar to low Fe concentrations, low Mn availability inhibits growth and carbon production of C. debilis. As a result from different species-specific trace metal requirements, SO phytoplankton species distribution and productivity may therefore not solely depend on the input of Fe alone, but also critically on Mn acting together as important drivers of SO phytoplankton ecology and biogeochemistry.

Klíčová slova:

Biology and life sciences – Cell biology – Plant science – Organisms – Eukaryota – Plants – Physical sciences – Chemistry – Animals – Invertebrates – People and places – Geographical locations – Cellular types – Cellular structures and organelles – Materials science – Materials – Physics – Chemical elements – Earth sciences – Ecology and environmental sciences – Marine and aquatic sciences – Algae – Phytoplankton – Diatoms – Plankton – Electromagnetic radiation – Light – Aquatic environments – Manganese – Pigments – Organic pigments – Marine environments – Sea water – Plant cell biology – Chloroplasts – Chlorophyll – Plant cells – Antarctica


Zdroje

1. Martin JH, Gordon RM, Fitzwater SE. Iron in Antarctic waters. Nature. 1990; 345: 156–158.

2. Raven JA. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol. 1990; 116: 1–18.

3. Raven JA, Evans MCW, Korb RE. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosyn. Res. 1999. 60; 111–149.

4. Behrenfeld MJ, Milligan AJ. Photophysiological expressions of iron stress in phytoplankton. Annu Rev Mar Sci. 2013; 5: 217–246.

5. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nature Geoscience. 2013; 6: 701–710.

6. Twining BS, Baines SB. The trace metal composition of marine phytoplankton. Annu Rev Mar Sci. 2013; 5: 191–215.

7. Greene RM, Geider RJ, Kolber Z, Falkowski PG. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 1992; 100: 565–575. doi: 10.1104/pp.100.2.565 16653030

8. Moore JK, Braucher O. Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences. 2008; 5: 631–656.

9. Boyd PW, Ellwood MJ. The biogeochemical cycle of iron in the ocean. Nat Geosci. Nature Publishing Group; 2010; 3: 675–682. doi: 10.1038/ngeo964

10. de Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U V., et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature. 1995; 373: 412–415. doi: 10.1038/373412a0

11. De Jong J, Schoemann V, Lannuzel D, Croot P, De Baar H, Tison JL. Natural iron fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic Peninsula. J Geophys Res Biogeosciences. 2012; 117. doi: 10.1029/2011JG001679

12. Middag R, de Baar HJW, Klunder MB, Laan P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation. Limnol Oceanogr. 2013; 58: 287–300. doi: 10.4319/lo.2013.58.1.0287

13. Raiswell R, Tranter M, Benning LG, Siegert M, De’ath R, Huybrechts P, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim Cosmochim Acta. 2006; 70: 2765–2780. doi: 10.1016/j.gca.2005.12.027

14. Sedwick PN, Ditullio GR. Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett. 1997; 24: 2515–2518.

15. Duce RA, Tindale NW. Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr. 1991: 36; 1715–1726.

16. Middag R, de Baar HJW, Klunder MB, Laan P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation. Limnol Oceanogr. 2013; 8: 287–300.

17. Browning TJ, Bouman HA, Henderson GM, Mather TA, Pyle DM, Schlosser C, et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys Res Lett. 2014; 41: 2851–2857.

18. Middag R, de Baar HJW, Laan P, Cai PH, Van Ooijen DJV. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Res. II. 2011; 58: 2661–2677.

19. Buma AGJ, de Baar HJW, Nolting RF, Van Bennekom AJ. Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities. Limnol Oceanogr. 1991; 36: 1865–1878.

20. Saito MA, Goepfert TJ, Ritt JT. Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnol Oceanogr. 2008; 53: 276–290. doi: 10.4319/lo.2008.53.1.0276

21. Morel FMM, Price NM. The biogeochemical cycles of trace metals in the oceans. Science. 2003; 300: 944–947. doi: 10.1126/science.1083545 12738853

22. Peers G, Price NM. A role for manganese in superoxide dismutases and growth of iron-deficient diatoms. Limnol Oceanogr. 2004; 49: 1774–1783.

23. Wolfe-Simon F, Grzebyk D, Schofield O, Falkowski PG. The role and evolution of superoxide dismutases in algae. J Phycol. 2005; 41: 453–465.

24. Allen MD, Kropat J, Tottey S, DelCampo JA, Merchant SS. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol. 2006; 143: 263–277. doi: 10.1104/pp.106.088609 17085511

25. Sunda WG, Huntsman SA. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol Oceanogr. 1983; 28: 924–934.

26. Sunda WG, Huntsman SA. Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol Oceanogr. 1996; 41: 373–387.

27. Thomson PG, McMinn A, Kiessling I, Watson M, Goldsworthy PM. Composition and succession of dinoflagellates and chrysophytes in the upper fast ice of Davis Station, East Antarctica. Polar Biol. 2006; 29: 337–345. doi: 10.1007/s00300-005-0060-y

28. Smetacek V, Assmy P, Henjes J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci. 2004; 16: 541–558. doi: 10.1017/S0954102004002317

29. Assmy P, Henjes J, Klaas C, Smetacek V. Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Deep Res Part I Oceanogr Res Pap. 2007; 54: 340–362. doi: 10.1016/j.dsr.2006.12.005

30. Tsuda A, Kiyosawa H, Kuwata A, Mochizuki M, Shiga N, Saito H, et al. Responses of diatoms to iron-enrichment (SEEDS) in the western subarctic Pacific, temporal and spatial comparisons. Prog Oceanogr. 2005; 64: 189–205. doi: 10.1016/j.pocean.2005.02.008

31. Guillard RRL, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962; 8: 229–239. doi: 10.1139/m62-029 13902807

32. Gerringa LJA, de Baar HJW, Timmermans KR. A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar Chem 68, 335–346 (2000).

33. Hathorne EC, Haley B, Stichel T, Grasse P, Zieringer M, Frank M. Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochem Geophys Geosyst. 2012; 13(1): Q01020.

34. Rapp I, Schlosser C, Rusiecka D, Gledhill M, Achterberg EP. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal Chim Acta. 2017;976: 1–13. doi: 10.1016/j.aca.2017.05.008 28576313

35. Cutter G, Casciotti K, Croot P, Geibert W, Heimbürger L-E, Lohan M, et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises. Version 3, Toulouse, France, GEOTRACES International Project Office; 2017. pp. 139 & Appendices.

36. Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan HG, Geider RJ. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol Oceanogr Methods. 2012; 10: 142–154.

37. Suggett DJ, MacIntyre HL, Geider RJ. Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods. 2004; 2: 316–332.

38. Suggett DJ, Moore CM, Hickman AE, Geider RJ. Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser. 2009; 376: 1–19.

39. Ralph PJ, Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany. 2005; 82: 222–237.

40. Wright SW, Jeffrey SW, Manoura RFC, Llewellyn CA, Bjornland T, Repeta D, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser. 1991; 77: 183–196.

41. Hopkinson BM, Mitchell BG, Reynolds RA, Wang H, Selph KE, Measures I, et al. Iron limitation across chlorophyll gradients in the southern Drake Passage: Phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnol Oceanogr. 2007; 52: 2540–2554.

42. Petrou K, Trimborn S, Rost B, Ralph P, Hassler CS. The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex. Mar Biol. 2014; 161: 925–937. doi: 10.1007/s00227-014-2392-z 24719494

43. Trimborn S, Hoppe CJM, Taylor BB, Bracher A, Hassler CS. Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep Sea Res. Part I: Oceanogr Res Papers. 2015; 98: 115–124.

44. Trimborn S, Brenneis T, Hoppe CJM, Laglera LM, Norman L, Santos-Echeandìa J, et al. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Mar Ecol Prog Ser. 2017; 578: 35–50.

45. Strzepek RF, Hunter KA, Frew RD, Harrison PJ, Boyd PW. Iron-light interactions differ in Southern Ocean phytoplankton. Limnol Oceanogr. 2012; 57: 1182–1200.

46. Schuback N, Schallenberg C, Duckham C, Maldonado MT, Tortell PD. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2 assimilation in marine phytoplankton. PloS One. 2015; 10(7): e0133235. doi: 10.1371/journal.pone.0133235 26171963

47. Trimborn S, Thoms S, Bischof K, Beszteri S. Susceptibility of two Southern Ocean phytoplankton key species to iron limitation and high light. Front Mar Sci. 2019; 6: 167. doi: 10.3389/FMARS.2019.00167

48. Behrenfeld MJ, Kolber ZS. Widespread Iron Limitation of Phytoplankton in the South Pacific Ocean. Science. 1999; 283: 840–843. doi: 10.1126/science.283.5403.840 9933166

49. Hoffmann LJ, Peeken I, Lochte K. Iron, silicate, and light co-limitation of three Southern Ocean diatom species. Polar Biol. 2008; 31: 1067–1080.

50. Timmermans K, Davey M, van der Wagt B, Snoek J, Geider R, Veldhuis M, et al. Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser. 2001; 217: 287–297.

51. Alderkamp A-C, Kulk G, Buma AGJ, Visser RJW, Van Dijken GL, Mills MM, et al. The effect of iron limitation on the photophysiology of Phaeocystis antarctica (Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under dynamic irradiance. J Phycol. 2012; 48: 45–59. doi: 10.1111/j.1529-8817.2011.01098.x 27009649

52. Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci. 2006; 103: 4777–4782. doi: 10.1073/pnas.0511066103 16537436

53. Van Leeuwe MA, Stefels J. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J Phycol. 1998; 34: 496–503.

54. Koch F, Beszteri S, Harms L, Trimborn S. The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology and transcriptome of Phaeocystis antarctica. Limnol Oceanogr. 2019; 64: 357–375.

55. Geider RJ, La Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosyn Res. 1994; 39: 275–301. doi: 10.1007/BF00014588 24311126

56. Greene RM, Geider RJ, Falkowski PG. Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr. 1991; 36: 1772–1782.

57. Mehler AH. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys. 1957; 33: 65–77.

58. Mackey KRM, Paytan A, Grossman AR, Bailey S. A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr. 2008; 53: 900–913.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#